Start-up vibration analysis for novelty detection on industrial gas turbines

Yu Zhang, S. Cruz-Manzo, A. Latimer
{"title":"Start-up vibration analysis for novelty detection on industrial gas turbines","authors":"Yu Zhang, S. Cruz-Manzo, A. Latimer","doi":"10.1109/INDEL.2016.7797800","DOIUrl":null,"url":null,"abstract":"This paper focuses on industrial application of start-up vibration signature analysis for novelty detection with experimental trials on industrial gas turbines (IGTs). Firstly, a representative vibration signature is extracted from healthy start-up vibration measurements through the use of an adaptive neuro-fuzzy inference system (ANFIS). Then, the first critical speed and the vibration level at the critical speed are located from the signature. Finally, two (s- and v-) health indices are introduced to detect and identify different novel/fault conditions from the IGT start-ups, in addition to traditional similarity measures, such as Euclidean distance and cross-correlation measures. Through a case study on IGTs, it is shown that the presented approach provides a convenient and efficient tool for IGT condition monitoring using start-up field data.","PeriodicalId":273613,"journal":{"name":"2016 International Symposium on Industrial Electronics (INDEL)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Industrial Electronics (INDEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDEL.2016.7797800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper focuses on industrial application of start-up vibration signature analysis for novelty detection with experimental trials on industrial gas turbines (IGTs). Firstly, a representative vibration signature is extracted from healthy start-up vibration measurements through the use of an adaptive neuro-fuzzy inference system (ANFIS). Then, the first critical speed and the vibration level at the critical speed are located from the signature. Finally, two (s- and v-) health indices are introduced to detect and identify different novel/fault conditions from the IGT start-ups, in addition to traditional similarity measures, such as Euclidean distance and cross-correlation measures. Through a case study on IGTs, it is shown that the presented approach provides a convenient and efficient tool for IGT condition monitoring using start-up field data.
用于工业燃气轮机新颖性检测的启动振动分析
本文通过对工业燃气轮机的试验研究,重点介绍了启动振动特征分析在新颖性检测中的工业应用。首先,利用自适应神经模糊推理系统(ANFIS)从健康启动振动测量中提取具有代表性的振动特征;然后,从特征中定位出第一临界转速和临界转速处的振动水平。最后,除了传统的相似性度量(如欧几里得距离和相互关联度量)之外,还引入了两个(s-和v-)健康指数来检测和识别来自IGT启动的不同新/故障条件。通过对IGT的实例研究表明,该方法为利用启动现场数据进行IGT状态监测提供了一种方便、有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信