Generative Synthesis of Defects in Industrial Computed Tomography Data

Robin Tenscher-Philipp, Tim Schanz, Yannick Wunderle, Philipp Lickert, M. Simon
{"title":"Generative Synthesis of Defects in Industrial Computed Tomography Data","authors":"Robin Tenscher-Philipp, Tim Schanz, Yannick Wunderle, Philipp Lickert, M. Simon","doi":"10.58286/28078","DOIUrl":null,"url":null,"abstract":"\nThe need for data increases as more and more companies try to take their first steps with AI to improve their efficiency and processes. Addressing this problem, we propose a solution for synthetic generation of industrial CT data for further AI applications using a deep learning approach packaged in a process pipeline. Based on a few individual CT scans of components with internal defects, the pipeline is able to generate STLs of any component with a large variation of artificially generated defects inside. Using this data with CT simulation, for example, provides access to creating large databases to overcome data lag and enrich further AI applications.\n","PeriodicalId":383798,"journal":{"name":"Research and Review Journal of Nondestructive Testing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Review Journal of Nondestructive Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58286/28078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The need for data increases as more and more companies try to take their first steps with AI to improve their efficiency and processes. Addressing this problem, we propose a solution for synthetic generation of industrial CT data for further AI applications using a deep learning approach packaged in a process pipeline. Based on a few individual CT scans of components with internal defects, the pipeline is able to generate STLs of any component with a large variation of artificially generated defects inside. Using this data with CT simulation, for example, provides access to creating large databases to overcome data lag and enrich further AI applications.
工业计算机断层扫描数据缺陷的生成合成
随着越来越多的公司试图通过人工智能迈出第一步,以提高效率和流程,对数据的需求也在增加。为了解决这个问题,我们提出了一种解决方案,使用封装在流程管道中的深度学习方法,为进一步的人工智能应用合成工业CT数据。基于对具有内部缺陷的部件进行几次单独的CT扫描,该管道能够生成内部存在大量人为缺陷的任何部件的stl。例如,将这些数据与CT模拟相结合,可以创建大型数据库,以克服数据滞后,并进一步丰富人工智能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信