N. Zine, A. Ivorra, J. Aguiló, R. Villa, J. Millan, J. Bausells, A. Errachid, P. Godignon, A. Benvenuto, L. Beccai, F. Valvo, A. Menciassi, P. Dario, M. Carrozza
{"title":"Multisensor silicon needle for cardiac applications","authors":"N. Zine, A. Ivorra, J. Aguiló, R. Villa, J. Millan, J. Bausells, A. Errachid, P. Godignon, A. Benvenuto, L. Beccai, F. Valvo, A. Menciassi, P. Dario, M. Carrozza","doi":"10.1109/MMB.2000.893775","DOIUrl":null,"url":null,"abstract":"An integrated chemical sensor with multiple ion and temperature sensors, composed of two ISFETs (pH and K/sup +/), one platinum pseudo-reference electrode and temperature sensor based on a platinum resistor has been realised by using a CMOS-compatible technology and silicon micromachining. This paper describes a summary of the fabrication process and results of the device characterisation in vitro. The feasibility of the fabrication technology has been demonstrated and all devices have operated satisfactory, with a response showing good sensitivity and linearity. This multisensor will be used in the on-line early detection of myocardial ischemia during cardiac surgery while the heart is artificially arrested (extracorporeal circulation).","PeriodicalId":141999,"journal":{"name":"1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2000.893775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
An integrated chemical sensor with multiple ion and temperature sensors, composed of two ISFETs (pH and K/sup +/), one platinum pseudo-reference electrode and temperature sensor based on a platinum resistor has been realised by using a CMOS-compatible technology and silicon micromachining. This paper describes a summary of the fabrication process and results of the device characterisation in vitro. The feasibility of the fabrication technology has been demonstrated and all devices have operated satisfactory, with a response showing good sensitivity and linearity. This multisensor will be used in the on-line early detection of myocardial ischemia during cardiac surgery while the heart is artificially arrested (extracorporeal circulation).