Machine Learning for the Predictive Maintenance of a Jaw Crusher in the Mining Industry

Mariya Guerroum, M. Zegrari, A. A. Elmahjoub, Mouna Berquedich, Malek Masmoudi
{"title":"Machine Learning for the Predictive Maintenance of a Jaw Crusher in the Mining Industry","authors":"Mariya Guerroum, M. Zegrari, A. A. Elmahjoub, Mouna Berquedich, Malek Masmoudi","doi":"10.1109/ICTMOD52902.2021.9739338","DOIUrl":null,"url":null,"abstract":"Diagnosis and prognosis are both crucial and interlinked steps in the context of predictive maintenance of rotating machines. Risk management correlated with machine Reliability within time intervention. In this paper, the most popular machine learning algorithms are tested and compared to serve Predictive maintenance purposes. The use case of this paper is an industrial jaw crusher from the mining industry production process. Azure machine learning studio platform made it possible to simulate the proposed approaches. The relevance of Machine Learning models for predicting components’ health states is proved while achieving high accuracies.","PeriodicalId":154817,"journal":{"name":"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTMOD52902.2021.9739338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Diagnosis and prognosis are both crucial and interlinked steps in the context of predictive maintenance of rotating machines. Risk management correlated with machine Reliability within time intervention. In this paper, the most popular machine learning algorithms are tested and compared to serve Predictive maintenance purposes. The use case of this paper is an industrial jaw crusher from the mining industry production process. Azure machine learning studio platform made it possible to simulate the proposed approaches. The relevance of Machine Learning models for predicting components’ health states is proved while achieving high accuracies.
机器学习在采矿行业颚式破碎机预测性维护中的应用
在旋转机械的预测性维护中,诊断和预后都是至关重要且相互关联的步骤。风险管理与时间干预下的机器可靠性相关。本文对最流行的机器学习算法进行了测试和比较,以服务于预测性维护目的。本文的用例是来自采矿业生产过程的工业颚式破碎机。Azure机器学习工作室平台使模拟所提出的方法成为可能。在实现高精度的同时,证明了机器学习模型用于预测组件健康状态的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信