Narciso F. Sousa, Flavius L. Gorgônio, Huliane M. Silva
{"title":"Um Estudo Comparativo entre Algoritmos de Agrupamentos de Dados Usando a Ferramenta YADMT","authors":"Narciso F. Sousa, Flavius L. Gorgônio, Huliane M. Silva","doi":"10.5753/ercemapi.2021.17911","DOIUrl":null,"url":null,"abstract":"A necessidade de transformar dados em informação e informação em conhecimento, impulsionou o surgimento da área de mineração de dados, cujo objetivo é fornecer técnicas de interpretação de grandes volumes de dados. Embora as atuais ferramentas computacionais de análise e processamento de informação possam analisar imensos volumes de dados em questões de segundos, aplicações do mundo real costumam ser bem mais complexas e possuir bases de dados muito mais desafiadoras do que as comumente apresentadas na literatura. Este trabalho apresenta um estudo comparativo entre algoritmos de agrupamento de dados a partir de bases de dados da FCPS (Fundamental Clustering Problem Suite) e da ferramenta YADMT (Yet Another Data Mining Tool), que simulam variadas situações presentes em problemas do mundo real. Os algoritmos escolhidos nesta pesquisa foram: colônia de formigas, k-means, mapas auto-organizáveis e métodos hierárquicos. Para avaliação dos mesmos foram utilizados a Medida F, o Índice R e a Variância Intra-Grupos.","PeriodicalId":422707,"journal":{"name":"Anais da IX Escola Regional de Computação Ceará, Maranhão, Piauí (ERCEMAPI 2021)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da IX Escola Regional de Computação Ceará, Maranhão, Piauí (ERCEMAPI 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ercemapi.2021.17911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A necessidade de transformar dados em informação e informação em conhecimento, impulsionou o surgimento da área de mineração de dados, cujo objetivo é fornecer técnicas de interpretação de grandes volumes de dados. Embora as atuais ferramentas computacionais de análise e processamento de informação possam analisar imensos volumes de dados em questões de segundos, aplicações do mundo real costumam ser bem mais complexas e possuir bases de dados muito mais desafiadoras do que as comumente apresentadas na literatura. Este trabalho apresenta um estudo comparativo entre algoritmos de agrupamento de dados a partir de bases de dados da FCPS (Fundamental Clustering Problem Suite) e da ferramenta YADMT (Yet Another Data Mining Tool), que simulam variadas situações presentes em problemas do mundo real. Os algoritmos escolhidos nesta pesquisa foram: colônia de formigas, k-means, mapas auto-organizáveis e métodos hierárquicos. Para avaliação dos mesmos foram utilizados a Medida F, o Índice R e a Variância Intra-Grupos.