Lars Schor, Iuliana Bacivarov, Hoeseok Yang, L. Thiele
{"title":"Fast worst-case peak temperature evaluation for real-time applications on multi-core systems","authors":"Lars Schor, Iuliana Bacivarov, Hoeseok Yang, L. Thiele","doi":"10.1109/LATW.2012.6261246","DOIUrl":null,"url":null,"abstract":"The reliability of multi-core systems is nowadays threatened by high chip temperatures leading to long-term reliability concerns and short-term functional errors. In real-time systems, high chip temperatures are even adherent to potential deadline violations. Therefore, correct functionality can only be guaranteed if the worst-case peak temperature is incorporated in real-time analysis. However, calculating the peak temperature of hundreds of design alternatives during design space exploration is time-consuming. In this paper, we address this challenge and present a fast analytic method to calculate a non-trivial upper bound on the maximum temperature of a multi-core real-time system with non-deterministic workload. The considered thermal model is able to address various thermal effects like heat exchange between neighboring cores and temperature-dependent leakage power. Finally, the proposed method is applied to a multi-core ARM platform to validate its efficiency and accuracy.","PeriodicalId":173735,"journal":{"name":"2012 13th Latin American Test Workshop (LATW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th Latin American Test Workshop (LATW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATW.2012.6261246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The reliability of multi-core systems is nowadays threatened by high chip temperatures leading to long-term reliability concerns and short-term functional errors. In real-time systems, high chip temperatures are even adherent to potential deadline violations. Therefore, correct functionality can only be guaranteed if the worst-case peak temperature is incorporated in real-time analysis. However, calculating the peak temperature of hundreds of design alternatives during design space exploration is time-consuming. In this paper, we address this challenge and present a fast analytic method to calculate a non-trivial upper bound on the maximum temperature of a multi-core real-time system with non-deterministic workload. The considered thermal model is able to address various thermal effects like heat exchange between neighboring cores and temperature-dependent leakage power. Finally, the proposed method is applied to a multi-core ARM platform to validate its efficiency and accuracy.