{"title":"Within-die delay variability in 90nm FPGAs and beyond","authors":"P. Sedcole, P. Cheung","doi":"10.1109/FPT.2006.270300","DOIUrl":null,"url":null,"abstract":"Semiconductor scaling causes increasing and unavoidable within-die parametric variability. This paper describes accurate measurement techniques for characterising both systematic and stochastic delay variability in FPGAs. Results and analysis are presented from measurements made on a sample of 90nm devices, showing that delay per logic element varies stochastically by plusmn3.54% on average over the set. The delay also varies by up to 3.66% across a single die from correlated sources of variability. The results are extrapolated to determine the impact at future technology nodes. The predicted significant performance degradation that variability will cause demonstrates the importance of new circuit or system design techniques to cope with variations in future FPGAs","PeriodicalId":354940,"journal":{"name":"2006 IEEE International Conference on Field Programmable Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Field Programmable Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2006.270300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148
Abstract
Semiconductor scaling causes increasing and unavoidable within-die parametric variability. This paper describes accurate measurement techniques for characterising both systematic and stochastic delay variability in FPGAs. Results and analysis are presented from measurements made on a sample of 90nm devices, showing that delay per logic element varies stochastically by plusmn3.54% on average over the set. The delay also varies by up to 3.66% across a single die from correlated sources of variability. The results are extrapolated to determine the impact at future technology nodes. The predicted significant performance degradation that variability will cause demonstrates the importance of new circuit or system design techniques to cope with variations in future FPGAs