On the form of integral payoff in differential games with random duration

E. Gromova, A. Tur
{"title":"On the form of integral payoff in differential games with random duration","authors":"E. Gromova, A. Tur","doi":"10.1109/ICAT.2017.8171597","DOIUrl":null,"url":null,"abstract":"In the paper we consider a class of the differential games with random duration, hence with either the random terminal (T) or the initial (T0) time of the game. Within this context we investigate the problem of whether the integral payoff transformation used is most applications can be performed. We prove that the availability of such transformation is subject to a special condition on the utility function and the cumulative distribution function F(t). The presented result is extended in several directions. Two examples illustrating our theoretical results are presented.","PeriodicalId":112404,"journal":{"name":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2017.8171597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper we consider a class of the differential games with random duration, hence with either the random terminal (T) or the initial (T0) time of the game. Within this context we investigate the problem of whether the integral payoff transformation used is most applications can be performed. We prove that the availability of such transformation is subject to a special condition on the utility function and the cumulative distribution function F(t). The presented result is extended in several directions. Two examples illustrating our theoretical results are presented.
随机持续时间微分对策的积分收益形式
本文考虑了一类具有随机持续时间的微分对策,即具有随机终端(T)或初始(T0)时间的微分对策。在此背景下,我们研究了所使用的积分收益变换是否适用于大多数应用的问题。我们证明了这种变换的有效性受制于效用函数和累积分布函数F(t)的一个特殊条件。所得结果在几个方向上得到推广。给出了两个例子来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信