Y. Kofanov, E. Kozlova, Egor Yu. Poluyko, Victoria K. Malievskaya, Lusine E. Mirzoyan, Vladimir A. Avdeyenkov
{"title":"The Method of Modeling Thermal Process for High Reliability On-Board Radio-Electronic Systems","authors":"Y. Kofanov, E. Kozlova, Egor Yu. Poluyko, Victoria K. Malievskaya, Lusine E. Mirzoyan, Vladimir A. Avdeyenkov","doi":"10.1109/MWENT47943.2020.9067484","DOIUrl":null,"url":null,"abstract":"In this work, we would like to suggest the algorithm of technical specification on thermal modeling of onboard electronic systems. It solves the problem of gaining the projected working accuracy in high heat load including internal heat release on electronic components of on-board radio electronic systems. That is a problem which is often faced by radio-electronic’ designers. We focus on thermal modeling in \"ASONIKA\" space. As an example of circuit board, we use laser gyroscope. As a result, developed by us methods of ensuring high reliability can be used not only in the development of a laser gyroscope, but also for vast variety of radio electronic devices. The main purpose of this project is to get system approach and improve reliability. The method is applicable not only for Zeeman laser gyroscope but also for vast variety of optoelectronic devices. Implementation of this method in optoelectronic devices’ design allows us to get system approach and improve reliability and working accuracy in various heat ranges.","PeriodicalId":122716,"journal":{"name":"2020 Moscow Workshop on Electronic and Networking Technologies (MWENT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Moscow Workshop on Electronic and Networking Technologies (MWENT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWENT47943.2020.9067484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, we would like to suggest the algorithm of technical specification on thermal modeling of onboard electronic systems. It solves the problem of gaining the projected working accuracy in high heat load including internal heat release on electronic components of on-board radio electronic systems. That is a problem which is often faced by radio-electronic’ designers. We focus on thermal modeling in "ASONIKA" space. As an example of circuit board, we use laser gyroscope. As a result, developed by us methods of ensuring high reliability can be used not only in the development of a laser gyroscope, but also for vast variety of radio electronic devices. The main purpose of this project is to get system approach and improve reliability. The method is applicable not only for Zeeman laser gyroscope but also for vast variety of optoelectronic devices. Implementation of this method in optoelectronic devices’ design allows us to get system approach and improve reliability and working accuracy in various heat ranges.