{"title":"Configuration tests of RHBD library with DICE, TAG4, dual rail, TMR and new 10T voting latch using UMC 65 and XFAB 180 nm","authors":"R. Shuler","doi":"10.1109/NSREC.2017.8115483","DOIUrl":null,"url":null,"abstract":"We describe heavy ion tests of RHBD configurations (varying guard timing, spacing, number of strings), including DICE, TAG4, TMR, I/O pads and a new 10T voting latch, to identify strategies for a portable nanoscale library. The TAG4, now off patent, provides superior performance to DICE. Large critical node separation requirements in bulk 65 nm are inferred. The new 10t voting latch performs as well as conventional TMR. A voting by block placement strategy demonstrates rapid reconfiguration for increased critical node group separation, and near optimal layout efficiency.","PeriodicalId":284506,"journal":{"name":"2017 IEEE Radiation Effects Data Workshop (REDW)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Radiation Effects Data Workshop (REDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSREC.2017.8115483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We describe heavy ion tests of RHBD configurations (varying guard timing, spacing, number of strings), including DICE, TAG4, TMR, I/O pads and a new 10T voting latch, to identify strategies for a portable nanoscale library. The TAG4, now off patent, provides superior performance to DICE. Large critical node separation requirements in bulk 65 nm are inferred. The new 10t voting latch performs as well as conventional TMR. A voting by block placement strategy demonstrates rapid reconfiguration for increased critical node group separation, and near optimal layout efficiency.