Hierarchical mixture clustering and its application to GMM based text independent speaker identification

R. Saeidi, Hamid Reza Mohammadi, T. Ganchev, R. Rodman
{"title":"Hierarchical mixture clustering and its application to GMM based text independent speaker identification","authors":"R. Saeidi, Hamid Reza Mohammadi, T. Ganchev, R. Rodman","doi":"10.1109/ISTEL.2008.4651403","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hierarchical mixture clustering method and investigate its application for complexity reduction of a GMM based speaker identification system. We show that by using GMM-HMC one can cluster speakers more accurately than that of a sorted GMM with the same acceleration rate. The system was tested on a universal background model-Gaussian mixture model with KL-divergence as the distance measure. While the proposed systempsilas performance is slightly inferior to the baseline system, its comparatively smaller computational load provides the potential to develop systems with higher performance.","PeriodicalId":133602,"journal":{"name":"2008 International Symposium on Telecommunications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2008.4651403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a hierarchical mixture clustering method and investigate its application for complexity reduction of a GMM based speaker identification system. We show that by using GMM-HMC one can cluster speakers more accurately than that of a sorted GMM with the same acceleration rate. The system was tested on a universal background model-Gaussian mixture model with KL-divergence as the distance measure. While the proposed systempsilas performance is slightly inferior to the baseline system, its comparatively smaller computational load provides the potential to develop systems with higher performance.
层次混合聚类及其在基于GMM的文本独立说话人识别中的应用
本文提出了一种层次混合聚类方法,并研究了其在基于GMM的说话人识别系统中的应用。研究表明,在相同加速速率下,使用GMM- hmc可以比使用排序的GMM更准确地聚类说话人。系统在通用背景模型-高斯混合模型上进行了测试,并以kl -散度作为距离度量。虽然所建议的系统性能略低于基准系统,但其相对较小的计算负载为开发具有更高性能的系统提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信