{"title":"Accelerating Low Bit-Width Deep Convolution Neural Network in MRAM","authors":"Zhezhi He, Shaahin Angizi, Deliang Fan","doi":"10.1109/ISVLSI.2018.00103","DOIUrl":null,"url":null,"abstract":"Deep Convolution Neural Network (CNN) has achieved outstanding performance in image recognition over large scale dataset. However, pursuit of higher inference accuracy leads to CNN architecture with deeper layers and denser connections, which inevitably makes its hardware implementation demand more and more memory and computational resources. It can be interpreted as ‘CNN power and memory wall’. Recent research efforts have significantly reduced both model size and computational complexity by using low bit-width weights, activations and gradients, while keeping reasonably good accuracy. In this work, we present different emerging nonvolatile Magnetic Random Access Memory (MRAM) designs that could be leveraged to implement ‘bit-wise in-memory convolution engine’, which could simultaneously store network parameters and compute low bit-width convolution. Such new computing model leverages the ‘in-memory computing’ concept to accelerate CNN inference and reduce convolution energy consumption due to intrinsic logic-in-memory design and reduction of data communication.","PeriodicalId":114330,"journal":{"name":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2018.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Deep Convolution Neural Network (CNN) has achieved outstanding performance in image recognition over large scale dataset. However, pursuit of higher inference accuracy leads to CNN architecture with deeper layers and denser connections, which inevitably makes its hardware implementation demand more and more memory and computational resources. It can be interpreted as ‘CNN power and memory wall’. Recent research efforts have significantly reduced both model size and computational complexity by using low bit-width weights, activations and gradients, while keeping reasonably good accuracy. In this work, we present different emerging nonvolatile Magnetic Random Access Memory (MRAM) designs that could be leveraged to implement ‘bit-wise in-memory convolution engine’, which could simultaneously store network parameters and compute low bit-width convolution. Such new computing model leverages the ‘in-memory computing’ concept to accelerate CNN inference and reduce convolution energy consumption due to intrinsic logic-in-memory design and reduction of data communication.