Research on abnormal search method of monitoring parameters for power plant equipment based on cluster analysis

G.K. Zhang, Y.J. Gu, N.C. Huang, Q.Y. Xie, H. Liang
{"title":"Research on abnormal search method of monitoring parameters for power plant equipment based on cluster analysis","authors":"G.K. Zhang, Y.J. Gu, N.C. Huang, Q.Y. Xie, H. Liang","doi":"10.1109/ICOSP.2012.6492047","DOIUrl":null,"url":null,"abstract":"In order to maintain the security, reliability and economy in actual production process and evaluate the health of operation status of power plant equipment, an abnormal search method of online monitoring parameters is proposed in this paper. By containing an integration of a large number of historical data and real-time data, the abnormal search method of online monitoring parameters can search out some special data or data segments that are significant and different from other data in the time subsequence of the monitoring parameters. In the abnormal parameter search process, it needs a segmentation of the time sequence based on some important points and the extraction of eigenvalues with the sub-patterns of the time subsequence. Then it is necessary to map the time subsequence to a high-dimensional feature space and grub the anomaly information from the perspective of model so as to obtain the set of anomaly parameters. It is of great significance to search out the obviously inconsistent data or behaviors from the other general patterns in the time series of online monitoring parameters for the early failure warning of the large and complex equipment.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6492047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to maintain the security, reliability and economy in actual production process and evaluate the health of operation status of power plant equipment, an abnormal search method of online monitoring parameters is proposed in this paper. By containing an integration of a large number of historical data and real-time data, the abnormal search method of online monitoring parameters can search out some special data or data segments that are significant and different from other data in the time subsequence of the monitoring parameters. In the abnormal parameter search process, it needs a segmentation of the time sequence based on some important points and the extraction of eigenvalues with the sub-patterns of the time subsequence. Then it is necessary to map the time subsequence to a high-dimensional feature space and grub the anomaly information from the perspective of model so as to obtain the set of anomaly parameters. It is of great significance to search out the obviously inconsistent data or behaviors from the other general patterns in the time series of online monitoring parameters for the early failure warning of the large and complex equipment.
基于聚类分析的电厂设备监测参数异常搜索方法研究
为了维护实际生产过程中的安全性、可靠性和经济性,评价电厂设备运行状态的健康性,本文提出了一种在线监测参数异常搜索方法。在线监测参数异常搜索方法通过包含大量历史数据和实时数据的集成,可以在监测参数的时间序列中搜索出一些特殊的数据或数据段,这些数据或数据段具有显著性,与其他数据不同。在异常参数搜索过程中,需要对时间序列进行基于重要点的分割,并利用时间序列的子模式提取特征值。然后将时间子序列映射到高维特征空间,从模型的角度提取异常信息,从而得到异常参数集。从在线监测参数时间序列的其他一般模式中找出明显不一致的数据或行为,对于大型复杂设备的早期故障预警具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信