CDS-RSRAM: a Reconfigurable SRAM Architecture to Reduce Read Power with Column Data Segmentation

Han Xu, Ziru Li, F. Qiao, Qi Wei, Xinjun Liu, Huazhong Yang
{"title":"CDS-RSRAM: a Reconfigurable SRAM Architecture to Reduce Read Power with Column Data Segmentation","authors":"Han Xu, Ziru Li, F. Qiao, Qi Wei, Xinjun Liu, Huazhong Yang","doi":"10.1109/ISQED48828.2020.9136993","DOIUrl":null,"url":null,"abstract":"SRAM access takes a significant part of on-chip power consumption in many signal processing systems. Reconfigurable data-adaptive SRAMs (RSRAM) can save considerable read power by utilizing data patterns. In these RSRAM designs, the column size (i.e., the number of cells in one column) of the cell array defines the granularity of data pattern exploitation. However, the column size cannot be too small due to circuit constraints, which makes finer-grained data features hidden and suppresses RSRAM's advantage of low-power read. In this paper, we propose a reconfigurable SRAM architecture with column data segmentation (CDS-RSRAM) to break this limitation to exploit better data patterns without decreasing the column size. We partition data in one column into several segments and perform statistical analysis on every segment respectively. Each data segment has one exclusive flag bit to control its working mode while reading. This architecture can leverage data patterns at finer granularity and magnify RSRAM's advantage of low-power read. We also make a thorough overhead analysis and improve the mode decision strategy to minimize the power overheads. The simulation results show that compared with the original RSRAM, the proposed architecture saves up to 36.8% read power with 8.8% area overhead. Compared with 8T SRAM, the total power saving can be up to 77.1%.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9136993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SRAM access takes a significant part of on-chip power consumption in many signal processing systems. Reconfigurable data-adaptive SRAMs (RSRAM) can save considerable read power by utilizing data patterns. In these RSRAM designs, the column size (i.e., the number of cells in one column) of the cell array defines the granularity of data pattern exploitation. However, the column size cannot be too small due to circuit constraints, which makes finer-grained data features hidden and suppresses RSRAM's advantage of low-power read. In this paper, we propose a reconfigurable SRAM architecture with column data segmentation (CDS-RSRAM) to break this limitation to exploit better data patterns without decreasing the column size. We partition data in one column into several segments and perform statistical analysis on every segment respectively. Each data segment has one exclusive flag bit to control its working mode while reading. This architecture can leverage data patterns at finer granularity and magnify RSRAM's advantage of low-power read. We also make a thorough overhead analysis and improve the mode decision strategy to minimize the power overheads. The simulation results show that compared with the original RSRAM, the proposed architecture saves up to 36.8% read power with 8.8% area overhead. Compared with 8T SRAM, the total power saving can be up to 77.1%.
CDS-RSRAM:一个可重构的SRAM架构,以降低读取功率与列数据分割
在许多信号处理系统中,SRAM访问占据了片上功耗的很大一部分。可重构数据自适应sram (RSRAM)可以通过利用数据模式节省大量的读取功率。在这些RSRAM设计中,单元格数组的列大小(即一列中的单元格数量)定义了数据模式利用的粒度。然而,由于电路的限制,列的大小不能太小,这使得细粒度的数据特征被隐藏,并且抑制了RSRAM低功耗读取的优势。在本文中,我们提出了一种具有列数据分割的可重构SRAM架构(CDS-RSRAM)来打破这一限制,在不减少列大小的情况下利用更好的数据模式。我们将一列的数据划分为几个段,并分别对每个段进行统计分析。每个数据段在读取时都有一个专用标志位来控制其工作模式。这种体系结构可以利用更细粒度的数据模式,并放大RSRAM的低功耗读取优势。我们还进行了全面的开销分析,并改进了模式决策策略,以最小化功耗开销。仿真结果表明,与原有的RSRAM相比,该架构可节省36.8%的读功率和8.8%的面积开销。与8T SRAM相比,总功耗可达77.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信