Analisis Efektifitas Algoritma FAST Menggunakan Metrik Average Percentage Fault Detection dan Waktu Eksekusi Pada Test Case Prioritization

Asri Maspupah, Mumuh Muharram, Sophia Gianina Daeli
{"title":"Analisis Efektifitas Algoritma FAST Menggunakan Metrik Average Percentage Fault Detection dan Waktu Eksekusi Pada Test Case Prioritization","authors":"Asri Maspupah, Mumuh Muharram, Sophia Gianina Daeli","doi":"10.47065/josh.v4i2.2822","DOIUrl":null,"url":null,"abstract":"It uses regression testing to validate the modification results so as not to cause new errors in features that are already functioning correctly. The implementation of regression testing is generally done by re-executing the test suite used in the previous test. One of the crucial issues in regression testing is determining a strategic approach to reuse existing test suites. Testing with retesting all test cases will result in a long and expensive test. Thus, it is necessary to use a test case selection approach. The research study focuses on analyzing the effectiveness of the FAST algorithm, namely the FAST-pw and FAST-all algorithms, for executing test cases based on priority. The research method uses experiments through running algorithms on test cases that have been implanted with faults in the software with a test case size of 10,000 to 20,000 lines of the program. The effectiveness parameter uses the test case execution time and the percentage of fault detection using the average percentage fault detection (APFD) metric. The results showed that the FAST algorithm, namely the FAST-pw and FAST-all algorithms, had good effectiveness values ​​when applied to TCP testing with small to medium-sized SUTs, namely test cases that tested 1,000 – 20,000 program lines.","PeriodicalId":233506,"journal":{"name":"Journal of Information System Research (JOSH)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information System Research (JOSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47065/josh.v4i2.2822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It uses regression testing to validate the modification results so as not to cause new errors in features that are already functioning correctly. The implementation of regression testing is generally done by re-executing the test suite used in the previous test. One of the crucial issues in regression testing is determining a strategic approach to reuse existing test suites. Testing with retesting all test cases will result in a long and expensive test. Thus, it is necessary to use a test case selection approach. The research study focuses on analyzing the effectiveness of the FAST algorithm, namely the FAST-pw and FAST-all algorithms, for executing test cases based on priority. The research method uses experiments through running algorithms on test cases that have been implanted with faults in the software with a test case size of 10,000 to 20,000 lines of the program. The effectiveness parameter uses the test case execution time and the percentage of fault detection using the average percentage fault detection (APFD) metric. The results showed that the FAST algorithm, namely the FAST-pw and FAST-all algorithms, had good effectiveness values ​​when applied to TCP testing with small to medium-sized SUTs, namely test cases that tested 1,000 – 20,000 program lines.
它使用回归测试来验证修改结果,以免在已经正常运行的特性中引起新的错误。回归测试的实现通常是通过重新执行前面测试中使用的测试套件来完成的。回归测试中的关键问题之一是确定重用现有测试套件的策略方法。重新测试所有测试用例的测试将导致一个漫长而昂贵的测试。因此,使用测试用例选择方法是必要的。研究重点分析了FAST算法(FAST-pw和FAST-all算法)基于优先级执行测试用例的有效性。研究方法是通过在软件中植入错误的测试用例上运行算法进行实验,测试用例的规模为程序的1万到2万行。有效性参数使用测试用例执行时间和使用平均百分比故障检测(APFD)度量的故障检测百分比。结果表明,FAST算法,即FAST-pw和FAST-all算法,在应用于小型到中型sut(即测试1,000 - 20,000行程序的测试用例)进行TCP测试时具有良好的有效性值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信