Combining SAX and Piecewise Linear Approximation to Improve Similarity Search on Financial Time Series

Nguyen Quoc Viet Hung, D. T. Anh
{"title":"Combining SAX and Piecewise Linear Approximation to Improve Similarity Search on Financial Time Series","authors":"Nguyen Quoc Viet Hung, D. T. Anh","doi":"10.1109/ISITC.2007.33","DOIUrl":null,"url":null,"abstract":"Efficient and accurate similarity searching on a large time series data set is an important but non- trivial problem. In this work, we propose a new approach to improve the quality of similarity search on time series data by combining symbolic aggregate approximation (SAX) and piecewise linear approximation. The approach consists of three steps: transforming real valued time series sequences to symbolic strings via SAX, pattern matching on the symbolic strings and a post-processing via Piecewise Linear Approximation.","PeriodicalId":394071,"journal":{"name":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITC.2007.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Efficient and accurate similarity searching on a large time series data set is an important but non- trivial problem. In this work, we propose a new approach to improve the quality of similarity search on time series data by combining symbolic aggregate approximation (SAX) and piecewise linear approximation. The approach consists of three steps: transforming real valued time series sequences to symbolic strings via SAX, pattern matching on the symbolic strings and a post-processing via Piecewise Linear Approximation.
结合SAX和分段线性逼近改进金融时间序列相似性搜索
对大型时间序列数据集进行高效、准确的相似度搜索是一个重要而又不容忽视的问题。本文提出了一种结合符号聚合近似(SAX)和分段线性近似来提高时间序列数据相似性搜索质量的新方法。该方法包括三个步骤:通过SAX将实值时间序列序列转换为符号字符串,在符号字符串上进行模式匹配和通过分段线性逼近进行后处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信