Exact trigonometric superfast inverse covariance representations

R. Merched
{"title":"Exact trigonometric superfast inverse covariance representations","authors":"R. Merched","doi":"10.1109/ICCNC.2013.6504134","DOIUrl":null,"url":null,"abstract":"This paper shows that superfast inverse covariance representations are not limited to DFT based formulas, and can be obtained similarly for trigonometric transforms, such as discrete cosine and discrete sine matrices. Unlike commonly implied by some authors, the use of real transforms does not depend on any symmetry condition in the columns of the corresponding data matrix. This result follows the state-of-the-art of the displacement approach to matrices in connection to recurrence polynomial realizations, where the choice of Chebyshev bases leads to DCT/DST decompositions, directly applicable to block frequency-domain equalization using real data.","PeriodicalId":229123,"journal":{"name":"2013 International Conference on Computing, Networking and Communications (ICNC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2013.6504134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper shows that superfast inverse covariance representations are not limited to DFT based formulas, and can be obtained similarly for trigonometric transforms, such as discrete cosine and discrete sine matrices. Unlike commonly implied by some authors, the use of real transforms does not depend on any symmetry condition in the columns of the corresponding data matrix. This result follows the state-of-the-art of the displacement approach to matrices in connection to recurrence polynomial realizations, where the choice of Chebyshev bases leads to DCT/DST decompositions, directly applicable to block frequency-domain equalization using real data.
精确三角超高速逆协方差表示
本文证明了超快速逆协方差表示并不局限于基于DFT的公式,并且可以类似地用于三角变换,如离散余弦矩阵和离散正弦矩阵。与某些作者通常暗示的不同,实变换的使用不依赖于相应数据矩阵列中的任何对称性条件。该结果遵循与递归多项式实现相关的矩阵位移方法的最新技术,其中Chebyshev基的选择导致DCT/DST分解,直接适用于使用实际数据的块频域均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信