{"title":"Flow-Lysometry and its Biomedical Application: Cytosolic Analysis of Single Cells in Large Populations","authors":"W.C. Lee, F. Kuypers, Y. Cho, A. Pisano","doi":"10.1109/MEMSYS.2009.4805320","DOIUrl":null,"url":null,"abstract":"We present a novel single-cell analyzer, flow-lysometry, to measure cytosolic components in large cell populations. The present flow-lysometry performs and synchronizes three functions (cell-detection, cell-lysis, and component-sensing) in a continuous microfluidic channel, thus achieving high-throughput measurements (20 cells/min) of wide target components. In the experimental study, we measure the cytosolic component (Ca++ ion) from each single RBC and verify population analysis of single cells in mixed cell populations. Thus, this work shows that the present flow-lysometry is useful to characterize complex cell populations, which is required for various biomedical studies.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel single-cell analyzer, flow-lysometry, to measure cytosolic components in large cell populations. The present flow-lysometry performs and synchronizes three functions (cell-detection, cell-lysis, and component-sensing) in a continuous microfluidic channel, thus achieving high-throughput measurements (20 cells/min) of wide target components. In the experimental study, we measure the cytosolic component (Ca++ ion) from each single RBC and verify population analysis of single cells in mixed cell populations. Thus, this work shows that the present flow-lysometry is useful to characterize complex cell populations, which is required for various biomedical studies.