A method for creating behavioral models of oscillators using augmented neural networks

Huan Yu, M. Swaminathan, C. Ji, David White
{"title":"A method for creating behavioral models of oscillators using augmented neural networks","authors":"Huan Yu, M. Swaminathan, C. Ji, David White","doi":"10.1109/EPEPS.2017.8329714","DOIUrl":null,"url":null,"abstract":"This paper describes a novel technique to model the nonlinear time-domain behavior of oscillators using augmented neural networks. In the proposed method, a feed forward neural network with a periodic unit is used to capture the periodicity of the oscillatory output waveform. As opposed to the state space model, which is based on a system of differential equations, the output of the oscillator is generated explicitly using the neural network presented in this paper. The model is trained using the data obtained from the simulation of transistor-level circuit models. Examples applied to ring oscillators show the advantages using this method based on CPU time and accuracy. The proposed model is compatible with Verilog-A.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a novel technique to model the nonlinear time-domain behavior of oscillators using augmented neural networks. In the proposed method, a feed forward neural network with a periodic unit is used to capture the periodicity of the oscillatory output waveform. As opposed to the state space model, which is based on a system of differential equations, the output of the oscillator is generated explicitly using the neural network presented in this paper. The model is trained using the data obtained from the simulation of transistor-level circuit models. Examples applied to ring oscillators show the advantages using this method based on CPU time and accuracy. The proposed model is compatible with Verilog-A.
利用增强神经网络建立振子行为模型的方法
本文介绍了一种利用增强神经网络对振子的非线性时域行为进行建模的新技术。该方法采用带周期单元的前馈神经网络捕获振荡输出波形的周期性。与基于微分方程系统的状态空间模型相反,振荡器的输出是使用本文提出的神经网络显式生成的。利用晶体管级电路模型仿真得到的数据对模型进行训练。应用于环形振荡器的实例表明,基于CPU时间和精度,该方法具有优势。该模型与Verilog-A兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信