On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set

H. Rahaman, D. Kole, D. K. Das, B. Bhattacharya
{"title":"On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set","authors":"H. Rahaman, D. Kole, D. K. Das, B. Bhattacharya","doi":"10.1109/VLSI.2008.106","DOIUrl":null,"url":null,"abstract":"Logic synthesis with reversible circuits has received considerable interest in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Newer technologies like ion trapping or nuclear magnetic resonance are required to emulate quantum gates. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely, single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. In this paper, it is shown that in an (n times n) reversible circuit implemented with k-CNOT gates, addition of only one extra control line along with duplication each k-CNOT gate yields an easily testable design, which admits a universal test set of size (n +1) that detects all SMGFs, RGFs, and PMGFs in the circuit.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Logic synthesis with reversible circuits has received considerable interest in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Newer technologies like ion trapping or nuclear magnetic resonance are required to emulate quantum gates. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely, single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. In this paper, it is shown that in an (n times n) reversible circuit implemented with k-CNOT gates, addition of only one extra control line along with duplication each k-CNOT gate yields an easily testable design, which admits a universal test set of size (n +1) that detects all SMGFs, RGFs, and PMGFs in the circuit.
通用测试集检测可逆电路缺门故障的研究
鉴于最近在量子计算方面取得的进展,可逆电路的逻辑合成受到了相当大的兴趣。通过部署几种特殊类型的量子门,如k-CNOT,设想实现可逆电路。需要离子捕获或核磁共振等新技术来模拟量子门。虽然经典的卡在故障模型被广泛用于传统CMOS电路的测试,但新的故障模型,即单缺门故障(SMGF)、重复门故障(RGF)、部分缺门故障(PMGF)和多缺门故障(MMGF),已经被发现更适合于模拟量子k-CNOT门的缺陷。本文表明,在用k-CNOT门实现的(n × n)可逆电路中,每个k-CNOT门只需添加一条额外的控制线即可产生易于测试的设计,该设计允许一个大小为(n +1)的通用测试集,可以检测电路中的所有SMGFs, RGFs和PMGFs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信