{"title":"Hybrid Approach for Intrusion Detection System","authors":"P. Singh, M. Venkatesan","doi":"10.1109/ICCTCT.2018.8551181","DOIUrl":null,"url":null,"abstract":"In the recent research, Intrusion Detection sys- tem in Machine Learning has been giving good detection and high accuracy on novel attacks. The major purpose of this study is implementing a method that combines Random-Forest classification technique and K-Means clustering Algorithms. In misuse-detection, random-forest algorithm will build a patterns of intrusion over a training data. And in anomaly-detection, intrusions will be identified by the outlier-detection mechanism in the random-forest algorithm. This hybrid-detection system will combine the advantage of anomaly and mis-use detection and improves the performance of detection. This paper mainly focused on evaluating the performance of hybrid approaches namely Gaussian Mixture clustering with Random Forest Classifiers and K-Means clustering with Random Forest Classifiers in-order to detect intrusion. These algorithms were evaluated for the four categories of attacks based on accuracy, false-alarm-rate, and detection-rate. From our experiments conducted, K-Means clustering with Random Forest Classifiers outperformed over the Gaussian Mixture clustering with Random Forest Classifiers.","PeriodicalId":344188,"journal":{"name":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTCT.2018.8551181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In the recent research, Intrusion Detection sys- tem in Machine Learning has been giving good detection and high accuracy on novel attacks. The major purpose of this study is implementing a method that combines Random-Forest classification technique and K-Means clustering Algorithms. In misuse-detection, random-forest algorithm will build a patterns of intrusion over a training data. And in anomaly-detection, intrusions will be identified by the outlier-detection mechanism in the random-forest algorithm. This hybrid-detection system will combine the advantage of anomaly and mis-use detection and improves the performance of detection. This paper mainly focused on evaluating the performance of hybrid approaches namely Gaussian Mixture clustering with Random Forest Classifiers and K-Means clustering with Random Forest Classifiers in-order to detect intrusion. These algorithms were evaluated for the four categories of attacks based on accuracy, false-alarm-rate, and detection-rate. From our experiments conducted, K-Means clustering with Random Forest Classifiers outperformed over the Gaussian Mixture clustering with Random Forest Classifiers.