{"title":"Effects of Environmental Factors on the Stability of Silver Nanowire Transparent Electrodes","authors":"Chiao-Chi Lin, D. Lin, Jing- Tang Jhan","doi":"10.1109/NMDC.2018.8605897","DOIUrl":null,"url":null,"abstract":"Silver nanowires (AgNWs) are currently one of the commercialized materials competing with indium-tin oxide for the application in transparent electrodes. Due to nanoscale instability effect, AgNWs degradation caused by environmental stresses is inevitably an obstacle to the wide acceptance of AgNWs. In this study, effects of irradiance of UV, UV photon energy, and heat on the degradation behaviors of pristine AgNWs was investigated under dry conditions of 15 % relative humidity. A minimal influence from substrate and encapsulant materials degradation was designed for discovering unambiguous degradation behavior of AgNWs. The synergistic aging effects between UV and temperature were demonstrated, and the results can be used for further understanding the degradation of encapsulated or module-level AgNWs transparent electrodes.","PeriodicalId":164481,"journal":{"name":"2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2018.8605897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Silver nanowires (AgNWs) are currently one of the commercialized materials competing with indium-tin oxide for the application in transparent electrodes. Due to nanoscale instability effect, AgNWs degradation caused by environmental stresses is inevitably an obstacle to the wide acceptance of AgNWs. In this study, effects of irradiance of UV, UV photon energy, and heat on the degradation behaviors of pristine AgNWs was investigated under dry conditions of 15 % relative humidity. A minimal influence from substrate and encapsulant materials degradation was designed for discovering unambiguous degradation behavior of AgNWs. The synergistic aging effects between UV and temperature were demonstrated, and the results can be used for further understanding the degradation of encapsulated or module-level AgNWs transparent electrodes.