DWT subbands fusion using ant colony optimization for edge detection

A. Muhammad, Ibrahim Bala, M. Salman, Alaa Eleyan
{"title":"DWT subbands fusion using ant colony optimization for edge detection","authors":"A. Muhammad, Ibrahim Bala, M. Salman, Alaa Eleyan","doi":"10.1109/SIU.2014.6830488","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for image edge detection using wavelet based ant colony optimization (ACO) is proposed. The proposed approach applies discrete wavelet transform (DWT) on the image. ACO is applied to the generated four subbands (Approximation, horizontal, vertical, and diagonal) separately for edge detection. After obtaining edges from the 4 subbands, inverse DWT is applied to fuse the results into one image with same size as the original one. The proposed approach outperforms the conventional ACO approach.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new approach for image edge detection using wavelet based ant colony optimization (ACO) is proposed. The proposed approach applies discrete wavelet transform (DWT) on the image. ACO is applied to the generated four subbands (Approximation, horizontal, vertical, and diagonal) separately for edge detection. After obtaining edges from the 4 subbands, inverse DWT is applied to fuse the results into one image with same size as the original one. The proposed approach outperforms the conventional ACO approach.
基于蚁群优化的DWT子带融合边缘检测
本文提出了一种基于小波的蚁群算法的图像边缘检测方法。该方法对图像进行离散小波变换(DWT)。将蚁群算法分别应用于生成的四个子带(近似、水平、垂直和对角)进行边缘检测。从4个子带中获取边缘后,应用逆小波变换将结果融合成与原始图像大小相同的图像。该方法优于传统的蚁群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信