Coding-aware Link Energy Estimation for 2D and 3D Networks-on-Chip with Virtual Channels

Lennart Bamberg, J. Joseph, Robert Schmidt, Thilo Pionteck, A. Ortiz
{"title":"Coding-aware Link Energy Estimation for 2D and 3D Networks-on-Chip with Virtual Channels","authors":"Lennart Bamberg, J. Joseph, Robert Schmidt, Thilo Pionteck, A. Ortiz","doi":"10.1109/PATMOS.2018.8464171","DOIUrl":null,"url":null,"abstract":"Network-on-chip (NoC) is the most promising design paradigm for the interconnect architecture of a multiprocessor system-on-chip (MPSoC). On the downside, a NoC has a significant impact on the overall energy consumption of the system. This work presents the first technique to precisely estimate the data dependent link energy consumption in NoCs with virtual channels. Our model works at a high level of abstraction, making it feasible to estimate the energy requirements at an early design stage. Additionally, it enables the fast evaluation and early exploration of low-power coding techniques. The presented model is applicable for 2D as well as 3D NoCs. A case study for an image processing application shows that the current link model leads to an underestimate of the link energy consumption by up to a factor of four. In contrast, the technique presented in this paper estimates the energy quantities precisely (error below 1 %).","PeriodicalId":234100,"journal":{"name":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2018.8464171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Network-on-chip (NoC) is the most promising design paradigm for the interconnect architecture of a multiprocessor system-on-chip (MPSoC). On the downside, a NoC has a significant impact on the overall energy consumption of the system. This work presents the first technique to precisely estimate the data dependent link energy consumption in NoCs with virtual channels. Our model works at a high level of abstraction, making it feasible to estimate the energy requirements at an early design stage. Additionally, it enables the fast evaluation and early exploration of low-power coding techniques. The presented model is applicable for 2D as well as 3D NoCs. A case study for an image processing application shows that the current link model leads to an underestimate of the link energy consumption by up to a factor of four. In contrast, the technique presented in this paper estimates the energy quantities precisely (error below 1 %).
基于虚拟信道的2D和3D片上网络的编码感知链路能量估计
片上网络(NoC)是多处理器片上系统(MPSoC)互连架构中最有前途的设计范例。不利的一面是,NoC会对系统的整体能耗产生重大影响。本文提出了第一种精确估计具有虚拟信道的noc中数据相关链路能耗的技术。我们的模型在一个高度抽象的层次上工作,使得在早期设计阶段估计能源需求是可行的。此外,它还支持对低功耗编码技术的快速评估和早期探索。该模型既适用于二维noc,也适用于三维noc。一个图像处理应用程序的案例研究表明,当前的链路模型导致链路能耗被低估了四倍。相比之下,本文提出的方法可以精确地估计能量(误差在1%以下)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信