Татьяна Алексеевна Гарманова, Tat'yana Alekseevna Garmanova, Игорь Анатольевич Шейпак, Igor Anatolievich Sheipak
{"title":"О точных оценках производных четного порядка в пространствах Соболева","authors":"Татьяна Алексеевна Гарманова, Tat'yana Alekseevna Garmanova, Игорь Анатольевич Шейпак, Igor Anatolievich Sheipak","doi":"10.4213/FAA3805","DOIUrl":null,"url":null,"abstract":"В статье рассматриваются нормы операторов вложения соболевских пространств\n$\\mathring{W}^n_2[0;1]\\hookrightarrow\\mathring{W}^k_\\infty[0;1]$ ($0\\leqslant k\\leqslant n-1$). Изучаются наименьшие возможные величины $A^2_{n,k}(x)$ в неравенствах $|f^{(k)}(x)|^2\\leqslant A^2_{n,k}(x)\\|f^{(n)}\\|^2_{L_2[0;1]}$ ($f\\in \\mathring{W}^n_2[0;1]$). На основе соотношений между функциями $A^2_{n,k}(x)$ и первообразными полиномов Лежандра устанавливаются свойства максимумов функций $A^2_{n,k}(x)$. Показано, что при всех $k$ точкой глобального максимума функции $A^2_{n,k}$ на отрезке $[0;1]$ является точка локального максимума, ближайшая к середине отрезка, в частности, при четных $k$ такой точкой является $x=1/2$. Для всех четных $k$ найдена явная формула для норм операторов вложения.","PeriodicalId":332168,"journal":{"name":"Функциональный анализ и его приложения","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Функциональный анализ и его приложения","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/FAA3805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
В статье рассматриваются нормы операторов вложения соболевских пространств
$\mathring{W}^n_2[0;1]\hookrightarrow\mathring{W}^k_\infty[0;1]$ ($0\leqslant k\leqslant n-1$). Изучаются наименьшие возможные величины $A^2_{n,k}(x)$ в неравенствах $|f^{(k)}(x)|^2\leqslant A^2_{n,k}(x)\|f^{(n)}\|^2_{L_2[0;1]}$ ($f\in \mathring{W}^n_2[0;1]$). На основе соотношений между функциями $A^2_{n,k}(x)$ и первообразными полиномов Лежандра устанавливаются свойства максимумов функций $A^2_{n,k}(x)$. Показано, что при всех $k$ точкой глобального максимума функции $A^2_{n,k}$ на отрезке $[0;1]$ является точка локального максимума, ближайшая к середине отрезка, в частности, при четных $k$ такой точкой является $x=1/2$. Для всех четных $k$ найдена явная формула для норм операторов вложения.