Embedded way prediction for last-level caches

Faissal M. Sleiman, R. Dreslinski, T. Wenisch
{"title":"Embedded way prediction for last-level caches","authors":"Faissal M. Sleiman, R. Dreslinski, T. Wenisch","doi":"10.1109/ICCD.2012.6378636","DOIUrl":null,"url":null,"abstract":"This paper investigates Embedded Way Prediction for large last-level caches (LLCs): an architecture and circuit design to provide the latency of parallel tag-data access at substantial energy savings. Existing way prediction approaches for L1 caches are compromised by the high associativity and filtered temporal locality of LLCs. We demonstrate: (1) the need for wide partial tag comparison, which we implement with a dynamic CAM alongside the data sub-array wordline decode, and (2) the inhibit bit, an architectural innovation to provide accurate predictions when the partial tag comparison is inconclusive. We present circuit critical-path and architectural power/performance studies demonstrating speedups of up to 15.4% (6.6% average) for scientific and server applications, matching the performance of parallel tag-data access while reducing energy overhead by 40%.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper investigates Embedded Way Prediction for large last-level caches (LLCs): an architecture and circuit design to provide the latency of parallel tag-data access at substantial energy savings. Existing way prediction approaches for L1 caches are compromised by the high associativity and filtered temporal locality of LLCs. We demonstrate: (1) the need for wide partial tag comparison, which we implement with a dynamic CAM alongside the data sub-array wordline decode, and (2) the inhibit bit, an architectural innovation to provide accurate predictions when the partial tag comparison is inconclusive. We present circuit critical-path and architectural power/performance studies demonstrating speedups of up to 15.4% (6.6% average) for scientific and server applications, matching the performance of parallel tag-data access while reducing energy overhead by 40%.
最后一级缓存的嵌入式方式预测
本文研究了大型最后一级缓存(llc)的嵌入式方式预测:一种架构和电路设计,可以在节省大量能源的情况下提供并行标签数据访问的延迟。现有的L1缓存预测方法受到llc的高关联性和过滤时间局部性的影响。我们证明:(1)需要广泛的部分标签比较,我们使用动态CAM与数据子阵列字行解码一起实现,以及(2)抑制位,这是一种架构创新,可以在部分标签比较不确定时提供准确的预测。我们提出的电路关键路径和架构功率/性能研究表明,对于科学和服务器应用,加速高达15.4%(平均6.6%),与并行标签数据访问的性能相匹配,同时减少了40%的能源开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信