Real-Time Visual Tracking Using a New Weight Distribution

Hua Shi, Cuihua Li, Taisong Jin
{"title":"Real-Time Visual Tracking Using a New Weight Distribution","authors":"Hua Shi, Cuihua Li, Taisong Jin","doi":"10.1109/ISCCS.2011.47","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time visual tracking algorithm which uses a new weight distribution for color space. Firstly, first-order Kalman filter model is introduced to update video backgrounds and obtain the targets. HSV color space is used to measure the similarity between the supposed targets and match targets. In this process, a weighting function based on pixel confidence and pixel position is proposed to weigh the pixel values in the rectangle area of tracking. The experimental results show that the algorithm is robust to scale invariant, partial occlusion and interactions of non-rigid objects, especially similar objects. The proposed algorithm is computationally efficient and it can satisfy the real-time requirements for visual tracking.","PeriodicalId":326328,"journal":{"name":"2011 International Symposium on Computer Science and Society","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Computer Science and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCCS.2011.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a real-time visual tracking algorithm which uses a new weight distribution for color space. Firstly, first-order Kalman filter model is introduced to update video backgrounds and obtain the targets. HSV color space is used to measure the similarity between the supposed targets and match targets. In this process, a weighting function based on pixel confidence and pixel position is proposed to weigh the pixel values in the rectangle area of tracking. The experimental results show that the algorithm is robust to scale invariant, partial occlusion and interactions of non-rigid objects, especially similar objects. The proposed algorithm is computationally efficient and it can satisfy the real-time requirements for visual tracking.
使用一种新的权重分布的实时视觉跟踪
本文提出了一种实时视觉跟踪算法,该算法采用一种新的色彩空间权重分布。首先,引入一阶卡尔曼滤波模型更新视频背景,获取目标;HSV色彩空间用于测量假定目标与匹配目标之间的相似度。在此过程中,提出了一种基于像素置信度和像素位置的加权函数,对跟踪矩形区域内的像素值进行加权。实验结果表明,该算法对尺度不变性、局部遮挡和非刚性物体特别是相似物体的相互作用具有较强的鲁棒性。该算法计算效率高,能够满足视觉跟踪的实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信