Mono-vision based moving object detection in complex traffic scenes

V. Fremont, S. R. Florez, Bihao Wang
{"title":"Mono-vision based moving object detection in complex traffic scenes","authors":"V. Fremont, S. R. Florez, Bihao Wang","doi":"10.1109/IVS.2017.7995857","DOIUrl":null,"url":null,"abstract":"Vision-based dynamic objects motion segmentation can significantly help to understand the context around vehicles, and furthermore improve road traffic safety and autonomous navigation. Therefore, moving object detection in complex traffic scene becomes an inevitable issue for ADAS and autonomous vehicles. In this paper, we propose an approach that combines different multiple views geometry constraints to achieve moving objects detection using only a monocular camera. Self-assigned weights are estimated online moderating the contribution of each constraint. Such a combination enhances the detection performance in degenerated situations. According to the experimental results, the proposed approach provides accurate moving objects detections in dynamic traffic scenarios with large camera motions.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Vision-based dynamic objects motion segmentation can significantly help to understand the context around vehicles, and furthermore improve road traffic safety and autonomous navigation. Therefore, moving object detection in complex traffic scene becomes an inevitable issue for ADAS and autonomous vehicles. In this paper, we propose an approach that combines different multiple views geometry constraints to achieve moving objects detection using only a monocular camera. Self-assigned weights are estimated online moderating the contribution of each constraint. Such a combination enhances the detection performance in degenerated situations. According to the experimental results, the proposed approach provides accurate moving objects detections in dynamic traffic scenarios with large camera motions.
基于单视觉的复杂交通场景运动目标检测
基于视觉的动态物体运动分割对理解车辆周围环境具有重要意义,有助于提高道路交通安全和自主导航能力。因此,复杂交通场景下的运动目标检测成为ADAS和自动驾驶汽车不可避免的问题。在本文中,我们提出了一种结合不同多视图几何约束的方法,仅使用单目摄像机即可实现运动物体检测。在线估计自分配的权重,以调节每个约束的贡献。这样的组合提高了退化情况下的检测性能。实验结果表明,该方法可以在大摄像机运动的动态交通场景中提供准确的运动目标检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信