Performa Regresi Ridge dan Regresi Lasso pada Data dengan Multikolinearitas

Fitri Rahmawati, Risky Yoga Suratman
{"title":"Performa Regresi Ridge dan Regresi Lasso pada Data dengan Multikolinearitas","authors":"Fitri Rahmawati, Risky Yoga Suratman","doi":"10.59632/leibniz.v2i2.176","DOIUrl":null,"url":null,"abstract":"Classical regression analysis with the OLS (ordinary least square) has several assumptions. One of the assumptions is that there is no multicollinearity in the predictor variables. If multicollinearity occurs in the data, there are several other methods that can be used, including lasso regression and ridge regression. These two regression models are shrinkage methods that can shrink the regression coefficient so that the variance decreases. In this study, the performance of ridge regression and lasso regression was compared for data with multicollinearity. The result of the mean of squared errors (MSE) shows that the performance of the ridge regression is better than the lasso regression. In terms of model interpretation, lasso regression is considered superior. This is because lasso regression can shrink some coefficients to zero so that only 4 of the 9 variables used in the final model.","PeriodicalId":374900,"journal":{"name":"Leibniz: Jurnal Matematika","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leibniz: Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59632/leibniz.v2i2.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classical regression analysis with the OLS (ordinary least square) has several assumptions. One of the assumptions is that there is no multicollinearity in the predictor variables. If multicollinearity occurs in the data, there are several other methods that can be used, including lasso regression and ridge regression. These two regression models are shrinkage methods that can shrink the regression coefficient so that the variance decreases. In this study, the performance of ridge regression and lasso regression was compared for data with multicollinearity. The result of the mean of squared errors (MSE) shows that the performance of the ridge regression is better than the lasso regression. In terms of model interpretation, lasso regression is considered superior. This is because lasso regression can shrink some coefficients to zero so that only 4 of the 9 variables used in the final model.
脊回归和Lasso回归的多重逻辑数据的性能
用OLS(普通最小二乘)的经典回归分析有几个假设。其中一个假设是在预测变量中不存在多重共线性。如果数据中存在多重共线性,还可以使用其他几种方法,包括lasso回归和ridge回归。这两种回归模型都是收缩方法,可以收缩回归系数,使方差减小。在本研究中,比较了脊回归和lasso回归对多重共线性数据的性能。均方根误差(MSE)的结果表明,岭回归的性能优于套索回归。在模型解释方面,套索回归被认为是优越的。这是因为套索回归可以将一些系数缩小到零,这样在最终模型中只使用9个变量中的4个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信