Low power HD video fast motion estimation algorithm based on signatures

T. Ogunfunmi, Pavel Arnaudov
{"title":"Low power HD video fast motion estimation algorithm based on signatures","authors":"T. Ogunfunmi, Pavel Arnaudov","doi":"10.1109/UMEDIA.2017.8074075","DOIUrl":null,"url":null,"abstract":"Video motion estimation consumes the major part of time and power in any video compression standard. Today most video capturing devices record HD video and are battery operated, which creates the need for low power Fast Motion Estimation algorithms This paper presents such an algorithm, which targets Full Search quality at HD resolution. It is built upon existing Fast Motion Estimation algorithms for lower resolution and introduces the concept of signature based motion estimation. The proposed algorithm hashes the Low Pass filtered video information to quantify Similarity. The proposed algorithm succeeds in closing about half of the quality gap between some of the most efficient Fast Motion Estimation algorithms and Full Search.","PeriodicalId":440018,"journal":{"name":"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UMEDIA.2017.8074075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Video motion estimation consumes the major part of time and power in any video compression standard. Today most video capturing devices record HD video and are battery operated, which creates the need for low power Fast Motion Estimation algorithms This paper presents such an algorithm, which targets Full Search quality at HD resolution. It is built upon existing Fast Motion Estimation algorithms for lower resolution and introduces the concept of signature based motion estimation. The proposed algorithm hashes the Low Pass filtered video information to quantify Similarity. The proposed algorithm succeeds in closing about half of the quality gap between some of the most efficient Fast Motion Estimation algorithms and Full Search.
基于签名的低功耗高清视频快速运动估计算法
在任何视频压缩标准中,视频运动估计都要消耗大量的时间和功率。今天,大多数视频捕捉设备记录高清视频并由电池供电,这就需要低功耗快速运动估计算法。本文提出了这样一种算法,其目标是高清分辨率下的全搜索质量。它建立在现有的低分辨率快速运动估计算法的基础上,并引入了基于签名的运动估计的概念。该算法对低通滤波后的视频信息进行散列,量化相似度。该算法成功地将一些最有效的快速运动估计算法与全搜索算法之间的质量差距缩小了一半左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信