Sonia Rani, V. C. V. Rao, Samrit Kumar Maity, Krishan Gopal Gupta
{"title":"Parallelization of FDM/FEM computation for PDEs on PARAM YUVA-II cluster of Xeon Phi coprocessors","authors":"Sonia Rani, V. C. V. Rao, Samrit Kumar Maity, Krishan Gopal Gupta","doi":"10.1109/INDICON.2014.7030621","DOIUrl":null,"url":null,"abstract":"This paper discusses an efficient implementation of finite difference method (FDM) and finite element method (FEM) computations for Partial Differential Equation (Poisson Equation) on a message passing cluster with Intel Xeon Phi coprocessors[6,15]. We have performed computations on PARAM YUVA-II [9] which is a message passing cluster with compute nodes as Xeon multi-core processors and Xeon Phi coprocessors [6,15,17-19]. A combination of OpenMP [4] and MPI [5,19,20] is used for structured grid FDM computations. The unstructured triangular and hexahedral meshes and graph partitioning software METIS [10] are used in FEM computations. The Jacobi iterative method is used to solve resulting matrix system of linear equations. A detailed performance analysis of optimizations on Xeon Phi coprocessor using OpenMP and MPI framework are presented. Our experiments indicate that MPI-OpenMP codes on FDM computations achieve 2X to 3X speed-ups for large mesh sizes. The FEM implementation has shown marginal improvement in speed-up on Xeon Phi Cluster.","PeriodicalId":409794,"journal":{"name":"2014 Annual IEEE India Conference (INDICON)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2014.7030621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper discusses an efficient implementation of finite difference method (FDM) and finite element method (FEM) computations for Partial Differential Equation (Poisson Equation) on a message passing cluster with Intel Xeon Phi coprocessors[6,15]. We have performed computations on PARAM YUVA-II [9] which is a message passing cluster with compute nodes as Xeon multi-core processors and Xeon Phi coprocessors [6,15,17-19]. A combination of OpenMP [4] and MPI [5,19,20] is used for structured grid FDM computations. The unstructured triangular and hexahedral meshes and graph partitioning software METIS [10] are used in FEM computations. The Jacobi iterative method is used to solve resulting matrix system of linear equations. A detailed performance analysis of optimizations on Xeon Phi coprocessor using OpenMP and MPI framework are presented. Our experiments indicate that MPI-OpenMP codes on FDM computations achieve 2X to 3X speed-ups for large mesh sizes. The FEM implementation has shown marginal improvement in speed-up on Xeon Phi Cluster.