J. Colmenares, Saleh Kargarrazi, H. Elahipanah, H. Nee, C. Zetterling
{"title":"High-temperature passive components for extreme environments","authors":"J. Colmenares, Saleh Kargarrazi, H. Elahipanah, H. Nee, C. Zetterling","doi":"10.1109/WIPDA.2016.7799951","DOIUrl":null,"url":null,"abstract":"Silicon carbide is an excellent candidate when high temperature power electronics applications are considered. Integrated circuits as well as several power devices have been tested at high temperature. However, little attention has been paid to high temperature passive components that could enable the full SiC potential. In this work, the high-temperature performances of different passive components have been studied. Integrated capacitors in bipolar SiC technology have been tested up to 300° C and, three different designs of inductors have been tested up to 700° C.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Silicon carbide is an excellent candidate when high temperature power electronics applications are considered. Integrated circuits as well as several power devices have been tested at high temperature. However, little attention has been paid to high temperature passive components that could enable the full SiC potential. In this work, the high-temperature performances of different passive components have been studied. Integrated capacitors in bipolar SiC technology have been tested up to 300° C and, three different designs of inductors have been tested up to 700° C.