High-temperature passive components for extreme environments

J. Colmenares, Saleh Kargarrazi, H. Elahipanah, H. Nee, C. Zetterling
{"title":"High-temperature passive components for extreme environments","authors":"J. Colmenares, Saleh Kargarrazi, H. Elahipanah, H. Nee, C. Zetterling","doi":"10.1109/WIPDA.2016.7799951","DOIUrl":null,"url":null,"abstract":"Silicon carbide is an excellent candidate when high temperature power electronics applications are considered. Integrated circuits as well as several power devices have been tested at high temperature. However, little attention has been paid to high temperature passive components that could enable the full SiC potential. In this work, the high-temperature performances of different passive components have been studied. Integrated capacitors in bipolar SiC technology have been tested up to 300° C and, three different designs of inductors have been tested up to 700° C.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Silicon carbide is an excellent candidate when high temperature power electronics applications are considered. Integrated circuits as well as several power devices have been tested at high temperature. However, little attention has been paid to high temperature passive components that could enable the full SiC potential. In this work, the high-temperature performances of different passive components have been studied. Integrated capacitors in bipolar SiC technology have been tested up to 300° C and, three different designs of inductors have been tested up to 700° C.
用于极端环境的高温无源元件
当考虑高温电力电子应用时,碳化硅是一个很好的候选者。集成电路以及一些功率器件已经在高温下进行了测试。然而,很少有人关注能够充分发挥SiC潜力的高温无源元件。本文研究了不同无源元件的高温性能。双极SiC技术中的集成电容器已经过高达300°C的测试,三种不同设计的电感器已经过高达700°C的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信