Interval-Valued q-Rung Orthopair Fuzzy Weighted Geometric Aggregation Operator and its Application to Multiple Criteria Decision-Making*

Hongxu Li, Yang Yang, Yingchao Zhang
{"title":"Interval-Valued q-Rung Orthopair Fuzzy Weighted Geometric Aggregation Operator and its Application to Multiple Criteria Decision-Making*","authors":"Hongxu Li, Yang Yang, Yingchao Zhang","doi":"10.1109/SoSE50414.2020.9130507","DOIUrl":null,"url":null,"abstract":"Interval-valued q-rung orthopair fuzzy sets, which are a generalization of the q-rung orthopair fuzzy sets, provide decision makers an even more malleable way to express their preference information in multiple criteria decision-making problems. In this paper, the weighted geometric aggregation operator based on interval-valued q-rung orthopair fuzzy sets is investigated to handle complex preference information. First, the interval-valued q-rung orthopair fuzzy weighted geometric operator is characterized and investigated. Second, a novel decision-making method is established combing with the intervalvalued q-rung orthopair fuzzy weighted geometric operator to rank the decision-making alternatives, and the effectiveness of the decision-making method is verified by a numerical example.","PeriodicalId":121664,"journal":{"name":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoSE50414.2020.9130507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Interval-valued q-rung orthopair fuzzy sets, which are a generalization of the q-rung orthopair fuzzy sets, provide decision makers an even more malleable way to express their preference information in multiple criteria decision-making problems. In this paper, the weighted geometric aggregation operator based on interval-valued q-rung orthopair fuzzy sets is investigated to handle complex preference information. First, the interval-valued q-rung orthopair fuzzy weighted geometric operator is characterized and investigated. Second, a novel decision-making method is established combing with the intervalvalued q-rung orthopair fuzzy weighted geometric operator to rank the decision-making alternatives, and the effectiveness of the decision-making method is verified by a numerical example.
区间值q-Rung正交模糊加权几何聚集算子及其在多准则决策中的应用*
区间值q阶正形模糊集是对q阶正形模糊集的一种推广,它为决策者在多准则决策问题中表达其偏好信息提供了一种更具延展性的方式。本文研究了基于区间值q阶正形模糊集的加权几何聚集算子,用于处理复杂的偏好信息。首先,对区间值q阶正交模糊加权几何算子进行了表征和研究。其次,结合区间q阶正交模糊加权几何算子对决策方案进行排序,建立了一种新的决策方法,并通过数值算例验证了该决策方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信