Optimal Power Flow Solutions using Directive Independence Grey Wolf Optimizer

Soraphon Kigsirisin, H. Miyauchi
{"title":"Optimal Power Flow Solutions using Directive Independence Grey Wolf Optimizer","authors":"Soraphon Kigsirisin, H. Miyauchi","doi":"10.1109/TENSYMP52854.2021.9550898","DOIUrl":null,"url":null,"abstract":"This study proposes Directive Independence Grey Wolf Optimizer (DIGWO) developed from Grey Wolf Optimizer (GWO). In GWO, wolfs are adhered to all the leaders for updating their position. There is also no guarantee for wolfs to move pervasively over the search space limiting the wolfs' performance and providing poor prey (solution) to problems. To overcome these issues, DIGWO allows wolfs to select the leaders independently for updating their position. The modified random walk strategies and the modified GWO strategy are represented and applied to wolfs in the exploration and exploitation stages. These strategies are balanced by a random parameter to prevent from premature convergence. Beneficially, wolfs can discover excellent prey over the search space. In this study, IEEE 30 bus test system is employed to oversee the proficiency of DIGWO through the objective functions of the optimal power flow (OPF) problems. As a result, DIGWO is efficient in solving the OPF problems comparing to the other optimization methods.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes Directive Independence Grey Wolf Optimizer (DIGWO) developed from Grey Wolf Optimizer (GWO). In GWO, wolfs are adhered to all the leaders for updating their position. There is also no guarantee for wolfs to move pervasively over the search space limiting the wolfs' performance and providing poor prey (solution) to problems. To overcome these issues, DIGWO allows wolfs to select the leaders independently for updating their position. The modified random walk strategies and the modified GWO strategy are represented and applied to wolfs in the exploration and exploitation stages. These strategies are balanced by a random parameter to prevent from premature convergence. Beneficially, wolfs can discover excellent prey over the search space. In this study, IEEE 30 bus test system is employed to oversee the proficiency of DIGWO through the objective functions of the optimal power flow (OPF) problems. As a result, DIGWO is efficient in solving the OPF problems comparing to the other optimization methods.
使用指令独立灰狼优化器的最优潮流解决方案
本文在灰狼优化器(GWO)的基础上,提出了指令独立性灰狼优化器(DIGWO)。在GWO中,狼会依附于所有的领导来更新他们的位置。也不能保证狼在搜索空间中广泛移动,这限制了狼的性能,并为问题提供了糟糕的猎物(解决方案)。为了克服这些问题,DIGWO允许狼独立选择领导者来更新他们的位置。将改进后的随机漫步策略和改进后的GWO策略分别应用于狼的探索和开发阶段。这些策略由一个随机参数来平衡,以防止过早收敛。有利的是,狼可以在搜索空间中发现优秀的猎物。本研究采用IEEE 30总线测试系统,通过最优潮流(OPF)问题的目标函数来监督DIGWO的熟练程度。因此,与其他优化方法相比,DIGWO在解决OPF问题方面效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信