{"title":"Light-front field theory of relativistic quark matter","authors":"M. Beyer, S. Mattiello, S. Strauss","doi":"10.1556/APH.27.2006.2-3.32","DOIUrl":null,"url":null,"abstract":"Light-front quantization to many-particle systems of finite temperature and density provides a novel approach towards a relativistic description of quark matter and allows us to calculate the perturbative as well as the non-perturbative regime of QCD. Utilizing a Dyson expansion of light-front manybody Green’s functions we have so far calculated three-quark, quark-quark and quark-antiquark correlations that lead to the chiral phase transition, the formation of hadrons and color superconductivity in a hot and/or dense environment. Presently, we use an effective zero-range interaction, to compare our results with the more traditional instant form approach where applicable.","PeriodicalId":201208,"journal":{"name":"Acta Physica Hungarica A) Heavy Ion Physics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica A) Heavy Ion Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.27.2006.2-3.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Light-front quantization to many-particle systems of finite temperature and density provides a novel approach towards a relativistic description of quark matter and allows us to calculate the perturbative as well as the non-perturbative regime of QCD. Utilizing a Dyson expansion of light-front manybody Green’s functions we have so far calculated three-quark, quark-quark and quark-antiquark correlations that lead to the chiral phase transition, the formation of hadrons and color superconductivity in a hot and/or dense environment. Presently, we use an effective zero-range interaction, to compare our results with the more traditional instant form approach where applicable.