A. Dianat, A. Attaran, R. Rashidzadeh, R. Muscedere
{"title":"Resonant-based test method for MEMS devices","authors":"A. Dianat, A. Attaran, R. Rashidzadeh, R. Muscedere","doi":"10.1109/ICECS.2014.7050012","DOIUrl":null,"url":null,"abstract":"In this paper a test method for capacitive Micro-Electro-Mechanical Systems (MEMS) is presented. The proposed method utilizes the principle of resonant circuits to detect structural defects of capacitive MEMS devices. It is shown that a small variation of MEMS capacitance due to a defect alters the resonance frequency considerably. It is also shown that the variation of the output amplitude can be observed for fault detection if an inductor with a high quality factor is employed in the test circuit. Simulation results using an implemented MEMS comb-drive indicate that the proposed method can detect common faults such as missing, broken and short fingers.","PeriodicalId":133747,"journal":{"name":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2014.7050012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper a test method for capacitive Micro-Electro-Mechanical Systems (MEMS) is presented. The proposed method utilizes the principle of resonant circuits to detect structural defects of capacitive MEMS devices. It is shown that a small variation of MEMS capacitance due to a defect alters the resonance frequency considerably. It is also shown that the variation of the output amplitude can be observed for fault detection if an inductor with a high quality factor is employed in the test circuit. Simulation results using an implemented MEMS comb-drive indicate that the proposed method can detect common faults such as missing, broken and short fingers.