Propagation modeling using the Split Step Fourier method: Ground boundary conditions analysis and acceleration by GPU

F. Vincent, Noblet Mathieu, Lahaye Robert, P. Nicolas, B. Christophe
{"title":"Propagation modeling using the Split Step Fourier method: Ground boundary conditions analysis and acceleration by GPU","authors":"F. Vincent, Noblet Mathieu, Lahaye Robert, P. Nicolas, B. Christophe","doi":"10.1109/RADAR.2014.7060311","DOIUrl":null,"url":null,"abstract":"Forward propagation above dielectric surfaces is studied using the Split Step Fourier (SSF) resolution technique. The introduction of Fresnel Boundary Conditions (SSF-FBC) and Leontovitch Boundary Conditions (SSF-LBC) is described. The numerical singularity induced by the reflection coefficient at pseudo-Brewster incidence is analyzed, and the DMFT solution for SSF-LBC resolution is retrieved. The limit induced by the Leontovitch assumption is studied on typical grounds. Numerical validations of the proposed method are presented by comparison with the asymptotic formulation. As the SSF is based on an FFT algorithm, the acceleration using a GPU implementation is studied and the numerical time gains are given.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Forward propagation above dielectric surfaces is studied using the Split Step Fourier (SSF) resolution technique. The introduction of Fresnel Boundary Conditions (SSF-FBC) and Leontovitch Boundary Conditions (SSF-LBC) is described. The numerical singularity induced by the reflection coefficient at pseudo-Brewster incidence is analyzed, and the DMFT solution for SSF-LBC resolution is retrieved. The limit induced by the Leontovitch assumption is studied on typical grounds. Numerical validations of the proposed method are presented by comparison with the asymptotic formulation. As the SSF is based on an FFT algorithm, the acceleration using a GPU implementation is studied and the numerical time gains are given.
使用分割步傅立叶方法的传播建模:地面边界条件分析和GPU加速
利用分步傅里叶(SSF)分辨率技术研究了介质表面上的正向传播。介绍了菲涅耳边界条件和列昂托维奇边界条件。分析了伪布鲁斯特入射下反射系数引起的数值奇异性,检索了SSF-LBC分辨率的DMFT解。在典型的基础上研究了由列昂托维奇假设引起的极限。通过与渐近公式的比较,给出了该方法的数值验证。由于SSF是基于FFT算法的,因此研究了GPU的加速实现,并给出了数值时间增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信