Flexible, planar, and stable electrolyte-gated carbon nanotube field-effect transistor-based sensor for ammonium detection in sweat

M. Petrelli, Bajramshahe Shkodra, M. C. Angeli, Alessandra Scarton, S. Pogliaghi, R. Biasi, P. Lugli, L. Petti
{"title":"Flexible, planar, and stable electrolyte-gated carbon nanotube field-effect transistor-based sensor for ammonium detection in sweat","authors":"M. Petrelli, Bajramshahe Shkodra, M. C. Angeli, Alessandra Scarton, S. Pogliaghi, R. Biasi, P. Lugli, L. Petti","doi":"10.1109/IFETC53656.2022.9948472","DOIUrl":null,"url":null,"abstract":"In this work, a flexible and planar electrolyte-gated carbon nanotube field-effect transistor-based sensor for ammonium detection is reported. The active layer was manufactured by means of a spray-deposited semiconducting single-walled carbon nanotube (SWCNT) thin film. The device was functionalized with an ion-selective membrane, based on the nonactin ionophore. The characterization was carried out by means of transfer and output curves, to test the response of the devices towards different concentrations of ammonium. The calibration curve of the fabricated sensors showed a linear detection range for ammonium from 0.01 to 10 mM, which covers the entire range of physiological concentrations of interest, with average sensitivities of 0.346 µA/decade and 94.35% coefficient of determination.","PeriodicalId":289035,"journal":{"name":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC53656.2022.9948472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, a flexible and planar electrolyte-gated carbon nanotube field-effect transistor-based sensor for ammonium detection is reported. The active layer was manufactured by means of a spray-deposited semiconducting single-walled carbon nanotube (SWCNT) thin film. The device was functionalized with an ion-selective membrane, based on the nonactin ionophore. The characterization was carried out by means of transfer and output curves, to test the response of the devices towards different concentrations of ammonium. The calibration curve of the fabricated sensors showed a linear detection range for ammonium from 0.01 to 10 mM, which covers the entire range of physiological concentrations of interest, with average sensitivities of 0.346 µA/decade and 94.35% coefficient of determination.
柔性、平面、稳定的电解门控碳纳米管场效应晶体管传感器用于汗液中铵的检测
本文报道了一种基于柔性平面电解门控碳纳米管场效应晶体管的铵离子传感器。该活性层是通过喷涂沉积的半导体单壁碳纳米管(SWCNT)薄膜制备的。该装置是功能化的离子选择膜,基于非行动离子载体。通过传递曲线和输出曲线进行了表征,测试了装置对不同浓度铵的响应。校准曲线显示,该传感器对铵的线性检测范围为0.01 ~ 10 mM,覆盖了整个生理浓度范围,平均灵敏度为0.346µa /decade,测定系数为94.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信