G. Martin, M. Seaford, R. Spencer, J. Braunstein, L. Eastman
{"title":"Optimization of 3D-SMODFETs on GaAs and InP substrates with a simple analytical model","authors":"G. Martin, M. Seaford, R. Spencer, J. Braunstein, L. Eastman","doi":"10.1109/CORNEL.1995.482428","DOIUrl":null,"url":null,"abstract":"Using a simple analytical method followed by a computer program that solves the detailed quantum-mechanics, it is possible to design the optimum material structures for pseudomorphic MODFETs with full channels. Using a MODFET with a pseudomorphic graded channel, and atomic planar doped pseudomorphic barriers on both sides of the channel, it is possible to achieve record-breaking electron sheet densities in the channel without having carriers in the barrier (Double-Doped Double-Strained MODFET, 3D-SMODFET). This theory is used to predicted the optimum material designs (quantum-mechanical solution) for GaAs, InP and GaN based structures.","PeriodicalId":268401,"journal":{"name":"Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","volume":"40 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1995.482428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Using a simple analytical method followed by a computer program that solves the detailed quantum-mechanics, it is possible to design the optimum material structures for pseudomorphic MODFETs with full channels. Using a MODFET with a pseudomorphic graded channel, and atomic planar doped pseudomorphic barriers on both sides of the channel, it is possible to achieve record-breaking electron sheet densities in the channel without having carriers in the barrier (Double-Doped Double-Strained MODFET, 3D-SMODFET). This theory is used to predicted the optimum material designs (quantum-mechanical solution) for GaAs, InP and GaN based structures.