LEAF: Leave-One-Out Forward Selection Method for Cancer Classification Using Gene Expression Data

Kentarou Fukuta, T. Nagashima, Yoshifumi Okada
{"title":"LEAF: Leave-One-Out Forward Selection Method for Cancer Classification Using Gene Expression Data","authors":"Kentarou Fukuta, T. Nagashima, Yoshifumi Okada","doi":"10.1109/ICIS.2010.132","DOIUrl":null,"url":null,"abstract":"Recent progress of bioinformatics technology has enabled large-scale screening of biomarker candidates. In this paper, we propose a new method called LEAF: LEAve-one-out Forward selection method for analysis of the gene expression data. Our proposed method has made it possible to construct the ranking of informative genes using the parameter which evaluates the efficiency of the class discriminant called Discriminant Power Score (DPS). We apply the LEAF to the three kinds of leukemia dataset (ALL/AML, ALL/MLL and MLL/AML), in a public database. Consequently, our method showed a stable discriminant result with 100% accuracy by the discriminant model which used the three genes set. Furthermore, it was shown that some genes with high DPS are genes related to the cancer clarified by research in recent years. In conclusion, our class discriminant method provides a high accuracy and simply result and supports discovery of a new biomarker. Our compatible method (LEAF) will be a useful tool for many researchers engaged in bioinformatics.","PeriodicalId":338038,"journal":{"name":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2010.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recent progress of bioinformatics technology has enabled large-scale screening of biomarker candidates. In this paper, we propose a new method called LEAF: LEAve-one-out Forward selection method for analysis of the gene expression data. Our proposed method has made it possible to construct the ranking of informative genes using the parameter which evaluates the efficiency of the class discriminant called Discriminant Power Score (DPS). We apply the LEAF to the three kinds of leukemia dataset (ALL/AML, ALL/MLL and MLL/AML), in a public database. Consequently, our method showed a stable discriminant result with 100% accuracy by the discriminant model which used the three genes set. Furthermore, it was shown that some genes with high DPS are genes related to the cancer clarified by research in recent years. In conclusion, our class discriminant method provides a high accuracy and simply result and supports discovery of a new biomarker. Our compatible method (LEAF) will be a useful tool for many researchers engaged in bioinformatics.
LEAF:利用基因表达数据进行癌症分类的留一正向选择方法
生物信息学技术的最新进展使生物标志物候选物的大规模筛选成为可能。本文提出了一种新的基因表达数据分析方法LEAF (LEAve-one-out Forward selection method)。我们提出的方法使得利用评价类判别器效率的参数判别能力评分(discriminant Power Score, DPS)来构建信息基因的排序成为可能。我们将LEAF应用于公共数据库中的三种白血病数据集(ALL/AML, ALL/MLL和MLL/AML)。因此,我们的方法通过使用三个基因集的判别模型显示出稳定的判别结果,准确率为100%。此外,近年来的研究表明,一些DPS高的基因是与癌症相关的基因。总之,我们的分类判别方法准确度高,结果简单,为新的生物标志物的发现提供了支持。我们的兼容方法(LEAF)将成为许多从事生物信息学研究人员的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信