On the Skipped Variables of Quantum Multiple-Valued Decision Diagrams

D. Y. Feinstein, M. Thornton
{"title":"On the Skipped Variables of Quantum Multiple-Valued Decision Diagrams","authors":"D. Y. Feinstein, M. Thornton","doi":"10.1109/ISMVL.2011.22","DOIUrl":null,"url":null,"abstract":"The data structure referred to as quantum multiple-valued decision diagrams (QMDD) is used to efficiently represent the unitary matrices describing reversible and quantum circuits. This paper investigates the conditions that cause skipped variables to appear in the QMDD of some binary and ternary quantum circuits. We have found that a unitary matrix that produces a skipped variable in a QMDD is likely to cause a specific anomaly when it is decomposed into a cascade of two-level unitary matrices by the Beck-Zeilinger-Bernstein-Bertani algorithm.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The data structure referred to as quantum multiple-valued decision diagrams (QMDD) is used to efficiently represent the unitary matrices describing reversible and quantum circuits. This paper investigates the conditions that cause skipped variables to appear in the QMDD of some binary and ternary quantum circuits. We have found that a unitary matrix that produces a skipped variable in a QMDD is likely to cause a specific anomaly when it is decomposed into a cascade of two-level unitary matrices by the Beck-Zeilinger-Bernstein-Bertani algorithm.
论量子多值决策图的跳过变量
采用量子多值决策图(QMDD)数据结构有效地表示描述可逆电路和量子电路的酉矩阵。本文研究了在某些二、三元量子电路的QMDD中导致跳过变量出现的条件。我们发现,在QMDD中产生跳过变量的酉矩阵,在通过Beck-Zeilinger-Bernstein-Bertani算法将其分解为级联的两级酉矩阵时,可能会导致特定的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信