E. Cochran, M. Page, N. J. van der Elst, Z. Ross, D. Trugman
{"title":"Fault Roughness at Seismogenic Depths and Links to Earthquake Behavior","authors":"E. Cochran, M. Page, N. J. van der Elst, Z. Ross, D. Trugman","doi":"10.1785/0320220043","DOIUrl":null,"url":null,"abstract":"\n Fault geometry affects the initiation, propagation, and cessation of earthquake rupture, as well as, potentially, the statistical behavior of earthquake sequences. We analyze 18,250 (−0.27 < M < 4.4) earthquakes of the 2016–2019 Cahuilla, California, swarm and, for the first time, use these high-resolution earthquake locations to map, in detail, the roughness across an active fault surface at depth. We find that the strike-slip fault is 50% rougher in the slip-perpendicular direction than parallel to slip. 3D mapping of fault roughness at seismogenic depths suggests that roughness varies by a factor of 8 for length scales of 1 km. We observe that the largest earthquake (M 4.4) occurred where there is significant fault complexity and the highest measured roughness. We also find that b-values are weakly positively correlated with fault roughness. Following the largest earthquake, we observe a distinct population of earthquakes with comparatively low b-values occurring in an area of high roughness within the rupture area of the M 4.4 earthquake. Finally, we measure roughness at multiple scales and find that the fault is self-affine with a Hurst exponent of 0.52, consistent with a Brownian surface.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320220043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Fault geometry affects the initiation, propagation, and cessation of earthquake rupture, as well as, potentially, the statistical behavior of earthquake sequences. We analyze 18,250 (−0.27 < M < 4.4) earthquakes of the 2016–2019 Cahuilla, California, swarm and, for the first time, use these high-resolution earthquake locations to map, in detail, the roughness across an active fault surface at depth. We find that the strike-slip fault is 50% rougher in the slip-perpendicular direction than parallel to slip. 3D mapping of fault roughness at seismogenic depths suggests that roughness varies by a factor of 8 for length scales of 1 km. We observe that the largest earthquake (M 4.4) occurred where there is significant fault complexity and the highest measured roughness. We also find that b-values are weakly positively correlated with fault roughness. Following the largest earthquake, we observe a distinct population of earthquakes with comparatively low b-values occurring in an area of high roughness within the rupture area of the M 4.4 earthquake. Finally, we measure roughness at multiple scales and find that the fault is self-affine with a Hurst exponent of 0.52, consistent with a Brownian surface.