Joint on-manifold self-calibration of odometry model and sensor extrinsics using pre-integration

Jérémie Deray, J. Solà, J. Andrade-Cetto
{"title":"Joint on-manifold self-calibration of odometry model and sensor extrinsics using pre-integration","authors":"Jérémie Deray, J. Solà, J. Andrade-Cetto","doi":"10.1109/ECMR.2019.8870942","DOIUrl":null,"url":null,"abstract":"This paper describes a self-calibration procedure that jointly estimates the extrinsic parameters of an exteroceptive sensor able to observe ego-motion, and the intrinsic parameters of an odometry motion model, consisting of wheel radii and wheel separation. We use iterative nonlinear on-manifold optimization with a graphical representation of the state, and resort to an adaptation of the pre-integration theory, initially developed for the IMU motion sensor, to be applied to the differential drive motion model. For this, we describe the construction of a pre-integrated factor for the differential drive motion model, which includes the motion increment, its covariance, and a first-order approximation of its dependence with the calibration parameters. As the calibration parameters change at each solver iteration, this allows a posteriori factor correction without the need of re-integrating the motion data. We validate our proposal in simulations and on a real robot and show the convergence of the calibration towards the true values of the parameters. It is then tested online in simulation and is shown to accommodate to variations in the calibration parameters when the vehicle is subject to physical changes such as loading and unloading a freight.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a self-calibration procedure that jointly estimates the extrinsic parameters of an exteroceptive sensor able to observe ego-motion, and the intrinsic parameters of an odometry motion model, consisting of wheel radii and wheel separation. We use iterative nonlinear on-manifold optimization with a graphical representation of the state, and resort to an adaptation of the pre-integration theory, initially developed for the IMU motion sensor, to be applied to the differential drive motion model. For this, we describe the construction of a pre-integrated factor for the differential drive motion model, which includes the motion increment, its covariance, and a first-order approximation of its dependence with the calibration parameters. As the calibration parameters change at each solver iteration, this allows a posteriori factor correction without the need of re-integrating the motion data. We validate our proposal in simulations and on a real robot and show the convergence of the calibration towards the true values of the parameters. It is then tested online in simulation and is shown to accommodate to variations in the calibration parameters when the vehicle is subject to physical changes such as loading and unloading a freight.
基于预积分的里程计模型和传感器外部性的联合流形自校准
本文描述了一种自校准程序,该程序联合估计能够观察自我运动的外知觉传感器的外在参数和里程计运动模型的内在参数,包括车轮半径和车轮间距。我们使用具有状态图形表示的迭代非线性流形优化,并采用最初为IMU运动传感器开发的预积分理论,将其应用于微分驱动运动模型。为此,我们描述了微分驱动运动模型的预积分因子的构建,该因子包括运动增量、协方差以及其与校准参数的依赖关系的一阶近似。由于校准参数在每次求解器迭代时发生变化,因此无需重新整合运动数据即可进行后验因子校正。我们在仿真和真实机器人上验证了我们的建议,并证明了校准对参数真实值的收敛性。然后在模拟中进行在线测试,并显示当车辆受到诸如装卸货物等物理变化时,它可以适应校准参数的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信