Creation of a panoramic image by genetic algorithm

T. Horiuchi, Momoyo Ito, S. Ito, M. Fukumi
{"title":"Creation of a panoramic image by genetic algorithm","authors":"T. Horiuchi, Momoyo Ito, S. Ito, M. Fukumi","doi":"10.1109/SPC.2013.6735119","DOIUrl":null,"url":null,"abstract":"This paper proposes a way to improve the performance of panoramic image generation by template matching using genetic algorithm (GA). GA is used to efficiently locate a template image for an object one, and can generate a panoramic image with high speed and accuracy than traditional image composition methods. Given x and y coordinates to chromosomes of genetic algorithm, GA carries out an optimization of the coordinates for genetic template matching. The present method detects the coordinates that exceeds a certain threshold value of a fitness function in template matching using luminance values. The template matching is carried out again at 8 vicinities of the coordinates to search an optimal solution. Using the optimal solution to the point that has the highest fitness value, we perform image composition of the template and the object images with respect to the coordinates. We obtained good results for specific images in experiments. However, in the case of other images, matching accuracy was worse by shear and tilt remained after the genetic template matching. It is expected an approach by using feature values improves in accuracy rather than luminance values in the future.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a way to improve the performance of panoramic image generation by template matching using genetic algorithm (GA). GA is used to efficiently locate a template image for an object one, and can generate a panoramic image with high speed and accuracy than traditional image composition methods. Given x and y coordinates to chromosomes of genetic algorithm, GA carries out an optimization of the coordinates for genetic template matching. The present method detects the coordinates that exceeds a certain threshold value of a fitness function in template matching using luminance values. The template matching is carried out again at 8 vicinities of the coordinates to search an optimal solution. Using the optimal solution to the point that has the highest fitness value, we perform image composition of the template and the object images with respect to the coordinates. We obtained good results for specific images in experiments. However, in the case of other images, matching accuracy was worse by shear and tilt remained after the genetic template matching. It is expected an approach by using feature values improves in accuracy rather than luminance values in the future.
通过遗传算法创建全景图像
提出了一种利用遗传算法进行模板匹配来提高全景图像生成性能的方法。利用遗传算法有效地定位目标图像的模板图像,与传统的图像合成方法相比,可以快速、准确地生成全景图像。给定遗传算法的染色体x和y坐标,遗传算法对遗传模板匹配的坐标进行优化。本方法使用亮度值检测模板匹配中超过适应度函数的某个阈值的坐标。在坐标附近的8处再次进行模板匹配,寻找最优解。利用适应度值最高的点的最优解,对模板和目标图像相对于坐标进行图像合成。我们在实验中对特定的图像都取得了很好的效果。而对于其他图像,由于遗传模板匹配后存在剪切和倾斜,匹配精度较差。期望将来使用特征值而不是亮度值来提高精度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信