{"title":"An adaptive square root cubature Kalman filter based SLAM algorithm for mobile robots","authors":"Jun Cai, X. Zhong","doi":"10.1109/ICMA.2015.7237830","DOIUrl":null,"url":null,"abstract":"For simultaneous localization and mapping (SLAM) of mobile robots, an innovative solution is proposed, named adaptive square root cubature Kalman filter based SLAM algorithm (ASRCKF-SLAM). The main contribution of the proposed algorithm lies that: 1) Square root factors are used in the proposed ASRCKF-SLAM algorithm to improve the calculation efficiency by avoiding the time-consuming Cholesky decompositions. 2) Using the adaptive Sage-Husa estimator to solve the large estimation errors or even divergence problem caused by the time-varying or unknown noise. Simulation results obtained demonstrate that the proposed ASRCKF-SLAM algorithm is superior to the existed SLAM method in the aspect of estimation accuracy and computational efficiency.","PeriodicalId":286366,"journal":{"name":"2015 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2015.7237830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
For simultaneous localization and mapping (SLAM) of mobile robots, an innovative solution is proposed, named adaptive square root cubature Kalman filter based SLAM algorithm (ASRCKF-SLAM). The main contribution of the proposed algorithm lies that: 1) Square root factors are used in the proposed ASRCKF-SLAM algorithm to improve the calculation efficiency by avoiding the time-consuming Cholesky decompositions. 2) Using the adaptive Sage-Husa estimator to solve the large estimation errors or even divergence problem caused by the time-varying or unknown noise. Simulation results obtained demonstrate that the proposed ASRCKF-SLAM algorithm is superior to the existed SLAM method in the aspect of estimation accuracy and computational efficiency.