Toward Improving Content-Based Image Retrieval Systems by means of Text Detection

C. Perez Lara, M. Lux, M. Mejía-Lavalle
{"title":"Toward Improving Content-Based Image Retrieval Systems by means of Text Detection","authors":"C. Perez Lara, M. Lux, M. Mejía-Lavalle","doi":"10.1109/ICMEAE.2014.19","DOIUrl":null,"url":null,"abstract":"Recent advances in text detection allow for finding text regions in natural scenes rather accurately. Global features in content based image retrieval, however, typically do not cover such a high level information. While characteristics of text regions may be reflected by texture or color properties, the respective pixels are not treated in a different way. In this contribution we investigate the impact of text detection on content based image retrieval using global features. Detected text regions are preprocessed to allow for different treatment by feature extraction algorithms, and we show that for certain domains this leads to a much higher precision in content based retrieval.","PeriodicalId":252737,"journal":{"name":"2014 International Conference on Mechatronics, Electronics and Automotive Engineering","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mechatronics, Electronics and Automotive Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent advances in text detection allow for finding text regions in natural scenes rather accurately. Global features in content based image retrieval, however, typically do not cover such a high level information. While characteristics of text regions may be reflected by texture or color properties, the respective pixels are not treated in a different way. In this contribution we investigate the impact of text detection on content based image retrieval using global features. Detected text regions are preprocessed to allow for different treatment by feature extraction algorithms, and we show that for certain domains this leads to a much higher precision in content based retrieval.
用文本检测方法改进基于内容的图像检索系统
文本检测的最新进展允许在自然场景中相当准确地找到文本区域。然而,基于内容的图像检索中的全局特征通常不涵盖如此高级别的信息。虽然文本区域的特征可以通过纹理或颜色属性来反映,但各自的像素不会以不同的方式处理。在这篇文章中,我们研究了文本检测对使用全局特征的基于内容的图像检索的影响。对检测到的文本区域进行预处理,以便通过特征提取算法进行不同的处理,并且我们表明,对于某些域,这导致基于内容的检索具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信