Wi-Wheat: Contact-Free Wheat Moisture Detection with Commodity WiFi

Weidong Yang, Xuyu Wang, Anxiao Song, S. Mao
{"title":"Wi-Wheat: Contact-Free Wheat Moisture Detection with Commodity WiFi","authors":"Weidong Yang, Xuyu Wang, Anxiao Song, S. Mao","doi":"10.1109/ICC.2018.8423034","DOIUrl":null,"url":null,"abstract":"In this paper, we present a non-destructive and economic wheat moisture detection system with commodity WiFi. First, we experimentally validate the feasibility of wheat moisture detection by using CSI amplitude and phase difference data. We then design Wi-Wheat system, where data preprocessing, feature extraction and support vector machine (SVM) classification are implemented for CSI processing module. For data preprocessing, we employ outlier detection, data normalization and eliminating noise for obtaining clear CSI amplitude and phase difference data. Then, we consider principal component analysis (PCA) based feature extraction for Wi-Wheat system. For SVM classification, Gaussian radial basis function (RBF) is used as the kernel function for wheat moisture detection. The experimental results show the Wi-Wheat system can achieve higher classification accuracy for LOS and NLOS scenarios.","PeriodicalId":387855,"journal":{"name":"2018 IEEE International Conference on Communications (ICC)","volume":"1993 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2018.8423034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we present a non-destructive and economic wheat moisture detection system with commodity WiFi. First, we experimentally validate the feasibility of wheat moisture detection by using CSI amplitude and phase difference data. We then design Wi-Wheat system, where data preprocessing, feature extraction and support vector machine (SVM) classification are implemented for CSI processing module. For data preprocessing, we employ outlier detection, data normalization and eliminating noise for obtaining clear CSI amplitude and phase difference data. Then, we consider principal component analysis (PCA) based feature extraction for Wi-Wheat system. For SVM classification, Gaussian radial basis function (RBF) is used as the kernel function for wheat moisture detection. The experimental results show the Wi-Wheat system can achieve higher classification accuracy for LOS and NLOS scenarios.
Wi-Wheat:无接触小麦水分检测与商品WiFi
本文介绍了一种基于商用WiFi的无损经济小麦水分检测系统。首先,通过实验验证了利用CSI幅值和相位差数据检测小麦水分的可行性。然后我们设计了Wi-Wheat系统,其中CSI处理模块实现了数据预处理、特征提取和支持向量机(SVM)分类。在数据预处理方面,我们采用离群值检测、数据归一化和去噪等方法,获得清晰的CSI幅相差数据。然后,我们考虑了基于主成分分析(PCA)的Wi-Wheat系统特征提取。支持向量机分类采用高斯径向基函数(RBF)作为小麦水分检测的核函数。实验结果表明,Wi-Wheat系统在LOS和NLOS场景下都能达到较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信