Application of Stochastic Adaptation in Block Method for Estimating Image Sequence Deformation Field

A. Tashlinskiy, P. Smirnov, R. Kovalenko, R. Ibragimov
{"title":"Application of Stochastic Adaptation in Block Method for Estimating Image Sequence Deformation Field","authors":"A. Tashlinskiy, P. Smirnov, R. Kovalenko, R. Ibragimov","doi":"10.1109/DSPA48919.2020.9213297","DOIUrl":null,"url":null,"abstract":"The paper proposes a block method for estimating the deformation field for image sequences using a stochastic adaptation procedure. As a target function, the paper considers mean square inter-frame difference and interframe correlation coefficient. The developed algorithm has a high noise resistance and allows one to reduce the influence of global inter-frame geometric changes. Also, by adjusting the size of the blocks, it makes it possible to remove or highlight moving objects of small size (rain, snow, falling leaves, etc.).","PeriodicalId":262164,"journal":{"name":"2020 22th International Conference on Digital Signal Processing and its Applications (DSPA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22th International Conference on Digital Signal Processing and its Applications (DSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPA48919.2020.9213297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a block method for estimating the deformation field for image sequences using a stochastic adaptation procedure. As a target function, the paper considers mean square inter-frame difference and interframe correlation coefficient. The developed algorithm has a high noise resistance and allows one to reduce the influence of global inter-frame geometric changes. Also, by adjusting the size of the blocks, it makes it possible to remove or highlight moving objects of small size (rain, snow, falling leaves, etc.).
随机自适应分块法在图像序列变形场估计中的应用
提出了一种用随机自适应方法估计图像序列变形场的分块方法。本文考虑帧间均方差和帧间相关系数作为目标函数。该算法具有较高的抗噪性,可以降低全局帧间几何变化的影响。此外,通过调整块的大小,它可以删除或突出显示小尺寸的移动对象(雨,雪,落叶等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信