Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun, V. Stojanović, K. Asanović
{"title":"A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators","authors":"Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun, V. Stojanović, K. Asanović","doi":"10.1109/ESSCIRC.2014.6942056","DOIUrl":null,"url":null,"abstract":"A 64-bit dual-core RISC-V processor with vector accelerators has been fabricated in a 45nm SOI process. This is the first dual-core processor to implement the open-source RISC-V ISA designed at the University of California, Berkeley. In a standard 40nm process, the RISC-V scalar core scores 10% higher in DMIPS/MHz than the Cortex-A5, ARM's comparable single-issue in-order scalar core, and is 49% more area-efficient. To demonstrate the extensibility of the RISC-V ISA, we integrate a custom vector accelerator alongside each single-issue in-order scalar core. The vector accelerator is 1.8× more energy-efficient than the IBM Blue Gene/Q processor, and 2.6× more than the IBM Cell processor, both fabricated in the same process. The dual-core RISC-V processor achieves maximum clock frequency of 1.3GHz at 1.2V and peak energy efficiency of 16.7 double-precision GFLOPS/W at 0.65V with an area of 3mm2.","PeriodicalId":202377,"journal":{"name":"ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"128","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2014.6942056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 128
Abstract
A 64-bit dual-core RISC-V processor with vector accelerators has been fabricated in a 45nm SOI process. This is the first dual-core processor to implement the open-source RISC-V ISA designed at the University of California, Berkeley. In a standard 40nm process, the RISC-V scalar core scores 10% higher in DMIPS/MHz than the Cortex-A5, ARM's comparable single-issue in-order scalar core, and is 49% more area-efficient. To demonstrate the extensibility of the RISC-V ISA, we integrate a custom vector accelerator alongside each single-issue in-order scalar core. The vector accelerator is 1.8× more energy-efficient than the IBM Blue Gene/Q processor, and 2.6× more than the IBM Cell processor, both fabricated in the same process. The dual-core RISC-V processor achieves maximum clock frequency of 1.3GHz at 1.2V and peak energy efficiency of 16.7 double-precision GFLOPS/W at 0.65V with an area of 3mm2.