A deployable and inflatable robotic arm concept for aerospace applications

Pierpaolo Palmieri, Matteo Gaidano, Mario Troise, Laura Salamina, Andrea Ruggeri, S. Mauro
{"title":"A deployable and inflatable robotic arm concept for aerospace applications","authors":"Pierpaolo Palmieri, Matteo Gaidano, Mario Troise, Laura Salamina, Andrea Ruggeri, S. Mauro","doi":"10.1109/MetroAeroSpace51421.2021.9511654","DOIUrl":null,"url":null,"abstract":"The interest in soft systems for space missions represents a growing trend in recent years. The development of inflatable robots, combined with the improvement of deployment mechanisms, allows to build novel lightweight and deployable robotic manipulators. In several space applications, the use of soft robots could minimize bulk and mass, reducing space mission costs. The main challenges in soft robotics are the control of the system and the exertion of high forces. In this manuscript, the concept of an inflatable manipulator with two inflatable links and three degrees of freedom is proposed. After a review about the possible materials to be used for the inflatable parts, the robot mechanical structure, the deploying strategy and the pneumatic line are presented. Then, an elastostatic approach is proposed to model the robot with the aim of developing its control. The last section shows preliminary experimental tests performed on the link prototype with the purpose to evaluate a static characterization in relation to the supplied pressure. Results suggest the validity of the adopted approach to model the system and clarify the pressure influence about the system performances. The study puts the basis for the development of the first prototype of the robotic system.","PeriodicalId":236783,"journal":{"name":"2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace51421.2021.9511654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The interest in soft systems for space missions represents a growing trend in recent years. The development of inflatable robots, combined with the improvement of deployment mechanisms, allows to build novel lightweight and deployable robotic manipulators. In several space applications, the use of soft robots could minimize bulk and mass, reducing space mission costs. The main challenges in soft robotics are the control of the system and the exertion of high forces. In this manuscript, the concept of an inflatable manipulator with two inflatable links and three degrees of freedom is proposed. After a review about the possible materials to be used for the inflatable parts, the robot mechanical structure, the deploying strategy and the pneumatic line are presented. Then, an elastostatic approach is proposed to model the robot with the aim of developing its control. The last section shows preliminary experimental tests performed on the link prototype with the purpose to evaluate a static characterization in relation to the supplied pressure. Results suggest the validity of the adopted approach to model the system and clarify the pressure influence about the system performances. The study puts the basis for the development of the first prototype of the robotic system.
用于航空航天应用的可展开和可充气机械臂概念
近年来,对空间任务软系统的兴趣呈现出日益增长的趋势。充气机器人的发展,结合部署机制的改进,可以构建新型的轻量化和可部署的机器人操纵器。在一些空间应用中,使用软机器人可以最大限度地减少体积和质量,从而降低空间任务成本。软机器人的主要挑战是系统的控制和大力的发挥。本文提出了一种具有两个充气连杆和三个自由度的充气机械手的概念。在对充气部件可能使用的材料进行综述后,给出了机器人的机械结构、展开策略和气动线路。然后,提出了一种弹性静力学方法来对机器人进行建模,目的是开发其控制。最后一节显示了在连杆原型上进行的初步实验测试,目的是评估与供应压力有关的静态特性。结果表明,所采用的方法对系统建模是有效的,并阐明了压力对系统性能的影响。该研究为开发机器人系统的第一个原型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信